本文整理汇总了Python中clustergrammer.Network.write_json_to_file方法的典型用法代码示例。如果您正苦于以下问题:Python Network.write_json_to_file方法的具体用法?Python Network.write_json_to_file怎么用?Python Network.write_json_to_file使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类clustergrammer.Network
的用法示例。
在下文中一共展示了Network.write_json_to_file方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: make_enr_vect_clust
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import write_json_to_file [as 别名]
def make_enr_vect_clust():
import enrichr_functions as enr_fun
from clustergrammer import Network
net = Network()
g2e_post = net.load_json_to_dict('json/g2e_enr_vect.json')
net = enr_fun.make_enr_vect_clust(g2e_post, 0.001, 1)
net.write_json_to_file('viz','json/enr_vect_example.json')
示例2: make_viz_json
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import write_json_to_file [as 别名]
def make_viz_json(inst_df, name):
from clustergrammer import Network
net = Network()
filename = 'json/'+name
load_df = {}
load_df['mat'] = inst_df
net.df_to_dat(load_df)
net.swap_nan_for_zero()
net.make_clust(views=[])
net.write_json_to_file('viz', filename, 'no-indent')
示例3: cluster
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import write_json_to_file [as 别名]
def cluster():
from clustergrammer import Network
net = Network()
vect_post = net.load_json_to_dict('fake_vect_post.json')
net.load_vect_post_to_net(vect_post)
net.swap_nan_for_zero()
# net.N_top_views()
net.make_clust(dist_type='cos',views=['N_row_sum','N_row_var'], dendro=True)
net.write_json_to_file('viz','json/large_vect_post_example.json','indent')
示例4: clustergrammer_load
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import write_json_to_file [as 别名]
def clustergrammer_load():
# import network class from Network.py
from clustergrammer import Network
net = Network()
net.pandas_load_file('mat_cats.tsv')
net.make_clust(dist_type='cos',views=['N_row_sum','N_row_var'])
net.write_json_to_file('viz','json/mult_cats.json','indent')
print('\n**********************')
print(net.dat['node_info']['row'].keys())
print('\n\n')
示例5: main
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import write_json_to_file [as 别名]
def main():
import time
start_time = time.time()
import pandas as pd
import StringIO
# import network class from Network.py
from clustergrammer import Network
net = Network()
# load data to dataframe
# net.load_tsv_to_net('txt/example_tsv_network.txt')
# net.load_tsv_to_net('txt/mat_1mb.txt')
# choose file
################
# file_buffer = open('txt/col_categories.txt')
file_buffer = open('txt/example_tsv_network.txt' )
buff = StringIO.StringIO( file_buffer.read() )
net.pandas_load_tsv_to_net(buff)
# filter rows
views = ['filter_row_sum','N_row_sum']
# distance metric
dist_type = 'cosine'
# linkage type
linkage_type = 'average'
net.make_clust(dist_type=dist_type, views=views, calc_col_cats=True,\
linkage_type=linkage_type)
net.write_json_to_file('viz', 'json/mult_view.json', 'no-indent')
elapsed_time = time.time() - start_time
print('\n\n\nelapsed time: '+str(elapsed_time))
示例6: prepare_heatmap
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import write_json_to_file [as 别名]
def prepare_heatmap(matrix_input, html_file, html_dir, tools_dir, categories, distance, linkage):
# prepare directory and html
os.mkdir(html_dir)
env = Environment(loader=FileSystemLoader(tools_dir + "/templates"))
template = env.get_template("clustergrammer.template")
overview = template.render()
with open(html_file, "w") as outf:
outf.write(overview)
json_output = html_dir + "/mult_view.json"
net = Network()
net.load_file(matrix_input)
if (categories['row']):
net.add_cats('row', categories['row'])
if (categories['col']):
net.add_cats('col', categories['col'])
net.cluster(dist_type=distance, linkage_type=linkage)
net.write_json_to_file('viz', json_output)
示例7: make_json_from_tsv
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import write_json_to_file [as 别名]
def make_json_from_tsv(name):
'''
make a clustergrammer json from a tsv file
'''
from clustergrammer import Network
print('\n' + name)
net = Network()
filename = 'txt/'+ name + '.txt'
net.load_file(filename)
df = net.dat_to_df()
net.swap_nan_for_zero()
# zscore first to get the columns distributions to be similar
net.normalize(axis='col', norm_type='zscore', keep_orig=True)
# filter the rows to keep the perts with the largest normalizes values
net.filter_N_top('row', 1000)
num_rows = net.dat['mat'].shape[0]
num_cols = net.dat['mat'].shape[1]
print('num_rows ' + str(num_rows))
print('num_cols ' + str(num_cols))
if num_cols < 50 or num_rows < 1000:
views = ['N_row_sum']
net.make_clust(dist_type='cos', views=views)
export_filename = 'json/' + name + '.json'
net.write_json_to_file('viz', export_filename)
else:
print('did not cluster, too many columns ')
示例8: make_viz_from_df
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import write_json_to_file [as 别名]
def make_viz_from_df(df, filename):
from clustergrammer import Network
net = Network()
net.df_to_dat(df)
net.swap_nan_for_zero()
# zscore first to get the columns distributions to be similar
net.normalize(axis='col', norm_type='zscore', keep_orig=True)
# filter the rows to keep the perts with the largest normalizes values
net.filter_N_top('row', 2000)
num_coluns = net.dat['mat'].shape[1]
if num_coluns < 50:
# views = ['N_row_sum', 'N_row_var']
views = ['N_row_sum']
net.make_clust(dist_type='cos', views=views)
filename = 'json/' + filename.split('/')[1].replace('.gct','') + '.json'
net.write_json_to_file('viz', filename)
示例9: Network
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import write_json_to_file [as 别名]
# make network object and load file
from clustergrammer import Network
net = Network()
net.load_file('mult_view.tsv')
# Z-score normalize the rows
#net.normalize(axis='row', norm_type='zscore', keep_orig=True)
# calculate clustering using default parameters
net.cluster()
# save visualization JSON to file for use by front end
net.write_json_to_file('viz', 'mult_view.json')
# needs pandas and sklearn as well
# pip install --user --upgrade clustergrammer pandas sklearn
示例10:
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import write_json_to_file [as 别名]
net.load_file('txt/rc_two_cats.txt')
# net.load_file('txt/example_tsv.txt')
# net.load_file('txt/col_categories.txt')
# net.load_file('txt/mat_cats.tsv')
# net.load_file('txt/mat_1mb.Txt')
# net.load_file('txt/mnist.txt')
# net.load_file('txt/sim_mat_4_cats.txt')
views = ['N_row_sum','N_row_var']
# # filtering rows and cols by sum
# net.filter_sum('row', threshold=20)
# net.filter_sum('col', threshold=30)
# # keep top rows based on sum
# net.filter_N_top('row', 10, 'sum')
net.make_clust(dist_type='cos',views=views , dendro=True,
sim_mat=True, filter_sim=0.1)
# net.produce_view({'N_row_sum':10,'dist':'euclidean'})
net.write_json_to_file('viz', 'json/mult_view.json', 'no-indent')
net.write_json_to_file('sim_row', 'json/mult_view_sim_row.json', 'no-indent')
net.write_json_to_file('sim_col', 'json/mult_view_sim_col.json', 'no-indent')
elapsed_time = time.time() - start_time
print('\n\nelapsed time')
print(elapsed_time)
示例11: Network
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import write_json_to_file [as 别名]
from clustergrammer import Network
net = Network()
# choose tsv file
####################
inst_name = 'Tyrosine'
# net.load_file('txt/phos_ratios_all_treat_no_geld_ST.txt')
net.load_file('txt/phos_ratios_all_treat_no_geld_Tyrosine.txt')
net.swap_nan_for_zero()
# net.normalize(axis='row', norm_type='zscore', keep_orig=True)
print(net.dat.keys())
views = ['N_row_sum', 'N_row_var']
net.make_clust(dist_type='cos',views=views , dendro=True,
sim_mat=True, filter_sim=0.1, calc_cat_pval=False)
# run_enrichr=['KEA_2015'])
# run_enrichr=['ENCODE_TF_ChIP-seq_2014'])
# run_enrichr=['GO_Biological_Process_2015'])
net.write_json_to_file('viz', 'json/'+inst_name+'.json', 'no-indent')
net.write_json_to_file('sim_row', 'json/'+inst_name+'_sim_row.json', 'no-indent')
net.write_json_to_file('sim_col', 'json/'+inst_name+'_sim_col.json', 'no-indent')
elapsed_time = time.time() - start_time
print('\n\nelapsed time: '+str(elapsed_time))
示例12: Network
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import write_json_to_file [as 别名]
import time
start_time = time.time()
# import network class from Network.py
from clustergrammer import Network
net = Network()
net.load_tsv_to_net('txt/example_tsv.txt')
net.make_filtered_views(dist_type='cos',views=['N_row_sum','pct_row_sum'])
net.write_json_to_file('viz', 'json/mult_view.json', 'indent')
# your code
elapsed_time = time.time() - start_time
print('\n\n\nelapsed time')
print(elapsed_time)
示例13: Network
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import write_json_to_file [as 别名]
# import network class from Network.py
from clustergrammer import Network
# get instance of Network
net = Network()
print(net.__doc__)
print('make tsv clustergram')
# load network from tsv file
##############################
net.load_tsv_to_net('txt/example_tsv_network.txt')
inst_filt = 0.001
inst_meet = 1
net.filter_network_thresh(inst_filt,inst_meet)
# cluster
#############
net.cluster_row_and_col('cos')
# export data visualization to file
######################################
net.write_json_to_file('viz', 'json/default_example.json', 'indent')