本文整理汇总了Python中clustergrammer.Network.dat_to_df方法的典型用法代码示例。如果您正苦于以下问题:Python Network.dat_to_df方法的具体用法?Python Network.dat_to_df怎么用?Python Network.dat_to_df使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类clustergrammer.Network
的用法示例。
在下文中一共展示了Network.dat_to_df方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: make_plex_matrix
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import dat_to_df [as 别名]
def make_plex_matrix():
'''
Make a cell line matrix with plex rows and cell line columns.
This will be used as a negative control that should show worsening correlation
as data is normalized/filtered.
'''
import numpy as np
import pandas as pd
from clustergrammer import Network
# load cl_info
net = Network()
cl_info = net.load_json_to_dict('../cell_line_info/cell_line_info_dict.json')
# load cell line expression
net.load_file('../CCLE_gene_expression/CCLE_NSCLC_all_genes.txt')
tmp_df = net.dat_to_df()
df = tmp_df['mat']
cols = df.columns.tolist()
rows = range(9)
rows = [i+1 for i in rows]
print(rows)
mat = np.zeros((len(rows), len(cols)))
for inst_col in cols:
for inst_cl in cl_info:
if inst_col in inst_cl:
inst_plex = int(cl_info[inst_cl]['Plex'])
if inst_plex != -1:
# print(inst_col + ' in ' + inst_cl + ': ' + str(inst_plex))
row_index = rows.index(inst_plex)
col_index = cols.index(inst_col)
mat[row_index, col_index] = 1
df_plex = pd.DataFrame(data=mat, columns=cols, index=rows)
filename = '../lung_cellline_3_1_16/lung_cl_all_ptm/precalc_processed/' + \
'exp-plex.txt'
df_plex.to_csv(filename, sep='\t')
示例2: main
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import dat_to_df [as 别名]
def main():
import numpy as np
import pandas as pd
from clustergrammer import Network
rtk_list = load_rtks()
net = Network()
net.load_file('txt/tmp_cst_drug_treat_cl.txt')
df_dict = net.dat_to_df()
inst_df = df_dict['mat']
inst_df = inst_df.ix[rtk_list]
inst_df.to_csv('txt/RTK_exp_in_drug_treat_cl.txt', sep='\t')
示例3: make_json_from_tsv
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import dat_to_df [as 别名]
def make_json_from_tsv(name):
'''
make a clustergrammer json from a tsv file
'''
from clustergrammer import Network
print('\n' + name)
net = Network()
filename = 'txt/'+ name + '.txt'
net.load_file(filename)
df = net.dat_to_df()
net.swap_nan_for_zero()
# zscore first to get the columns distributions to be similar
net.normalize(axis='col', norm_type='zscore', keep_orig=True)
# filter the rows to keep the perts with the largest normalizes values
net.filter_N_top('row', 1000)
num_rows = net.dat['mat'].shape[0]
num_cols = net.dat['mat'].shape[1]
print('num_rows ' + str(num_rows))
print('num_cols ' + str(num_cols))
if num_cols < 50 or num_rows < 1000:
views = ['N_row_sum']
net.make_clust(dist_type='cos', views=views)
export_filename = 'json/' + name + '.json'
net.write_json_to_file('viz', export_filename)
else:
print('did not cluster, too many columns ')
示例4: reproduce_Mark_correlation_matrix
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import dat_to_df [as 别名]
def reproduce_Mark_correlation_matrix():
import pandas as pd
from scipy.spatial.distance import squareform
from clustergrammer import Network
from copy import deepcopy
dist_vect = calc_custom_dist(data_type='ptm_none', dist_metric='correlation',
pairwise='True')
dist_mat = squareform(dist_vect)
# make similarity matrix
dist_mat = 1 - dist_mat
net = Network()
data_type = 'ptm_none'
filename = '../lung_cellline_3_1_16/lung_cl_all_ptm/precalc_processed/' + \
data_type + '.txt'
# load file and export dataframe
net = deepcopy(Network())
net.load_file(filename)
net.swap_nan_for_zero()
tmp_df = net.dat_to_df()
df = tmp_df['mat']
cols = df.columns.tolist()
rows = cols
mark_df = pd.DataFrame(data=dist_mat, columns=cols, index=rows)
save_filename = '../lung_cellline_3_1_16/lung_cl_all_ptm/precalc_processed/' \
+ 'Mark_corr_sim_mat' + '.txt'
mark_df.to_csv(save_filename, sep='\t')
示例5: clust_from_response
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import dat_to_df [as 别名]
#.........这里部分代码省略.........
for inst_enr_score in top_terms:
for tmp_num in num_dict.keys():
keep_terms.extend( top_terms[inst_enr_score][tmp_num] )
keep_terms = list(set(keep_terms))
# keep enriched terms that are at the top 10 based on at least one score
keep_enr = []
for inst_enr in enr:
if inst_enr['name'] in keep_terms:
keep_enr.append(inst_enr)
# fill in full matrix
#######################
# genes
row_node_names = []
# enriched terms
col_node_names = []
# gather information from the list of enriched terms
for inst_enr in keep_enr:
col_node_names.append(inst_enr['name'])
row_node_names.extend(inst_enr['int_genes'])
row_node_names = sorted(list(set(row_node_names)))
net = Network()
net.dat['nodes']['row'] = row_node_names
net.dat['nodes']['col'] = col_node_names
net.dat['mat'] = scipy.zeros([len(row_node_names),len(col_node_names)])
for inst_enr in keep_enr:
inst_term = inst_enr['name']
col_index = col_node_names.index(inst_term)
# use combined score for full matrix - will not be seen in viz
tmp_score = scores['combined_score'][inst_term]
net.dat['node_info']['col']['value'].append(tmp_score)
for inst_gene in inst_enr['int_genes']:
row_index = row_node_names.index(inst_gene)
# save association
net.dat['mat'][row_index, col_index] = 1
# cluster full matrix
#############################
# do not make multiple views
views = ['']
if len(net.dat['nodes']['row']) > 1:
net.make_clust(dist_type='jaccard', views=views, dendro=False)
else:
net.make_clust(dist_type='jaccard', views=views, dendro=False, run_clustering=False)
# get dataframe from full matrix
df = net.dat_to_df()
for score_type in score_types:
for num_terms in num_dict:
inst_df = deepcopy(df)
inst_net = deepcopy(Network())
inst_df['mat'] = inst_df['mat'][top_terms[score_type][num_terms]]
# load back into net
inst_net.df_to_dat(inst_df)
# make views
if len(net.dat['nodes']['row']) > 1:
inst_net.make_clust(dist_type='jaccard', views=['N_row_sum'], dendro=False)
else:
inst_net.make_clust(dist_type='jaccard', views=['N_row_sum'], dendro=False, run_clustering = False)
inst_views = inst_net.viz['views']
# add score_type to views
for inst_view in inst_views:
inst_view['N_col_sum'] = num_dict[num_terms]
inst_view['enr_score_type'] = score_type
# add values to col_nodes and order according to rank
for inst_col in inst_view['nodes']['col_nodes']:
inst_col['rank'] = len(top_terms[score_type][num_terms]) - top_terms[score_type][num_terms].index(inst_col['name'])
inst_name = inst_col['name']
inst_col['value'] = scores[score_type][inst_name]
# add views to main network
net.viz['views'].extend(inst_views)
return net