当前位置: 首页>>代码示例>>Python>>正文


Python Network.make_filtered_views方法代码示例

本文整理汇总了Python中clustergrammer.Network.make_filtered_views方法的典型用法代码示例。如果您正苦于以下问题:Python Network.make_filtered_views方法的具体用法?Python Network.make_filtered_views怎么用?Python Network.make_filtered_views使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在clustergrammer.Network的用法示例。


在下文中一共展示了Network.make_filtered_views方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import make_filtered_views [as 别名]
def main():

  import time
  start_time = time.time()
  import pandas as pd
  import StringIO

  # import network class from Network.py
  from clustergrammer import Network

  net = Network()

  # load data to dataframe 
  # net.load_tsv_to_net('txt/example_tsv_network.txt')
  # net.load_tsv_to_net('txt/mat_1mb.txt')

  # choose file 
  ################
  # file_buffer = open('txt/col_categories.txt')
  file_buffer = open('txt/example_tsv_network.txt'  )


  buff = StringIO.StringIO( file_buffer.read() )
  net.pandas_load_tsv_to_net(buff)

  # filter rows 
  views = ['filter_row_sum','N_row_sum']

  # distance metric 
  dist_type = 'cosine'

  # linkage type 
  linkage_type = 'average'


  net.make_filtered_views(dist_type=dist_type, views=views, calc_col_cats=True,\
  linkage_type=linkage_type)

  net.write_json_to_file('viz', 'json/mult_view.json', 'no-indent')

  elapsed_time = time.time() - start_time
  print('\n\n\nelapsed time: '+str(elapsed_time))
开发者ID:msyinmei,项目名称:clustergrammer.js,代码行数:44,代码来源:mock_web_app_load.py

示例2: enrichr_clust_from_response

# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import make_filtered_views [as 别名]

#.........这里部分代码省略.........
  # keep enriched terms that are at the top 10 based on at least one score 
  keep_enr = []
  for inst_enr in enr:
    if inst_enr['name'] in keep_terms:
      keep_enr.append(inst_enr)


  # fill in full matrix 
  #######################

  # genes 
  row_node_names = []
  # enriched terms 
  col_node_names = []

  # gather information from the list of enriched terms 
  for inst_enr in keep_enr:
    col_node_names.append(inst_enr['name'])
    row_node_names.extend(inst_enr['int_genes'])

  row_node_names = sorted(list(set(row_node_names)))

  net = Network()
  net.dat['nodes']['row'] = row_node_names
  net.dat['nodes']['col'] = col_node_names
  net.dat['mat'] = scipy.zeros([len(row_node_names),len(col_node_names)])

  for inst_enr in keep_enr:

    inst_term = inst_enr['name']
    col_index = col_node_names.index(inst_term)

    # use combined score for full matrix - will not be seen in viz
    tmp_score = scores['combined_score'][inst_term]
    net.dat['node_info']['col']['value'].append(tmp_score)

    for inst_gene in inst_enr['int_genes']:
      row_index = row_node_names.index(inst_gene)

      # save association 
      net.dat['mat'][row_index, col_index] = 1

  # cluster full matrix 
  #############################
  # do not make multiple views 
  views = ['']

  print('\n\n\n')  
  print('net nodes')
  print(net.dat['nodes']['row'])
  print('\n\n\n')  


  if len(net.dat['nodes']['row']) > 1:
    net.make_filtered_views(dist_type='jaccard', views=views, dendro=False)
  else: 
    net.make_filtered_views(dist_type='jaccard', views=views, dendro=False, run_clustering=False)

  # get dataframe from full matrix 
  df = net.dat_to_df()

  for inst_score_type in score_types:

    inst_df = deepcopy(df)
    inst_net = deepcopy(Network())

    inst_df['mat'] = inst_df['mat'][top_terms[inst_score_type]]

    print('\n\n'+inst_score_type)
    print(inst_df['mat'].shape)
    print(top_terms[inst_score_type])

    # load back into net 
    inst_net.df_to_dat(inst_df)

    # make views 
    if len(net.dat['nodes']['row']) > 1:
      inst_net.make_filtered_views(dist_type='jaccard', views=['N_row_sum'], dendro=False)
    else:
      inst_net.make_filtered_views(dist_type='jaccard', views=['N_row_sum'], dendro=False, run_clustering = False)

    inst_views = inst_net.viz['views']

    # add score_type to views 
    for inst_view in inst_views:
      inst_view['enr_score_type'] = inst_score_type

      # add values to col_nodes and order according to rank 
      for inst_col in inst_view['nodes']['col_nodes']:

        inst_col['rank'] = len(top_terms[inst_score_type]) - \
        top_terms[inst_score_type].index(inst_col['name'])
        
        inst_name = inst_col['name']
        inst_col['value'] = scores[inst_score_type][inst_name]

    # add views to main network 
    net.viz['views'].extend(inst_views)

  return net  
开发者ID:aeron15,项目名称:clustergrammer,代码行数:104,代码来源:enrichr_functions.py

示例3: main

# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import make_filtered_views [as 别名]
def main(mongo_address, viz_id, vect_post):
  from bson.objectid import ObjectId
  from pymongo import MongoClient
  from clustergrammer import Network

  # set up database connection 
  client = MongoClient(mongo_address)
  db = client.clustergrammer 
  viz_id = ObjectId(viz_id)
  # get placeholder viz data 
  found_viz = db.networks.find_one({'_id': viz_id })

  # initialize export_dat 
  export_dat = {}
  export_viz = {}

  # try to make clustegram using vect_post 
  try:

    # ini network obj 
    net = Network()
    
    # vector endpoint 
    net.load_vect_post_to_net(vect_post)

    # swap nans for zeros
    net.swap_nan_for_zero()

    # deprecated clustering modules 
    ####################################
    # cluster g2e using pandas
    # net.fast_mult_views()

    # # calculate top views rather than percentage views
    # net.N_top_views()
    ####################################

    net.make_filtered_views(dist_type='cosine', dendro=True, \
      views=['N_row_sum'], linkage_type='average')

    # export dat 
    try:

      # convert data to list 
      net.dat['mat'] = net.dat['mat'].tolist()
      net.dat['mat_up'] = net.dat['mat_up'].tolist()
      net.dat['mat_dn'] = net.dat['mat_dn'].tolist()

      export_dat['dat'] = net.export_net_json('dat')
      export_dat['source'] = 'g2e_enr_vect'
      dat_id = db.network_data.insert( export_dat )
      print('G2E: network data successfully uploaded')
    
    except:
      export_dat['dat'] = 'data-too-large'
      export_dat['source'] = 'g2e_enr_vect'
      dat_id = db.network_data.insert( export_dat )
      print('G2E: network data too large to be uploaded')

    update_viz = net.viz 
    update_dat = dat_id

  # if there is an error update json with error 
  except:

    print('\n--------------------------------')
    print('G2E clustering error')
    print('----------------------------------\n')
    update_viz = 'error'
    update_dat = 'error'


  # export vix to database 

  found_viz['viz'] = update_viz
  found_viz['dat'] = update_dat

   # update the viz data 
  try:
    db.networks.update_one( {"_id":viz_id}, {"$set": found_viz} )
    print('\n\n---------------------------------------------------')
    print( 'G2E Successfully made and uploaded clustergram')
    print('---------------------------------------------------\n\n')
  except:
    print('\n--------------------------------')
    print('G2E error in loading viz into database')
    print('----------------------------------\n')

  # close database connection 
  client.close() 
开发者ID:aeron15,项目名称:clustergrammer,代码行数:92,代码来源:run_g2e_background.py

示例4: main

# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import make_filtered_views [as 别名]
def main( buff, inst_filename, mongo_address, viz_id):
  import numpy as np
  import flask
  from bson.objectid import ObjectId
  from pymongo import MongoClient
  from flask import request
  from clustergrammer import Network
  import StringIO

  ##############################
  # set up database connection 
  ##############################
  # set up connection 
  client = MongoClient(mongo_address)
  db = client.clustergrammer

  # get placeholder viz data 
  viz_id = ObjectId(viz_id)
  found_viz = db.networks.find_one({'_id':viz_id})

  try:
    ########################
    # load and cluster 
    ########################

    # initiate class network 
    net = Network()
    # net.load_lines_from_tsv_to_net(file_lines)  
    net.pandas_load_tsv_to_net(buff)

    # swap nans for zero 
    net.swap_nan_for_zero()

    # deprecated clustering module
    ####################################

    # # fast mult views takes care of pre-filtering
    # net.fast_mult_views()

    ####################################

    net.make_filtered_views(dist_type='cosine', dendro=True, \
      views=['filter_row_sum'], linkage_type='average')

    ###############################
    # save to database 
    ###############################

    export_dat = {}
    export_dat['name'] = inst_filename
    export_dat['dat'] = net.export_net_json('dat')
    export_dat['source'] = 'user_upload'
    # save dat to separate document 
    dat_id = db.network_data.insert(export_dat)

    update_viz = net.viz 
    update_dat = dat_id

  except:
    print('\n-----------------------')
    print('error in clustering')
    print('-----------------------\n')
    update_viz = 'error'
    update_dat = 'error'

  # update found_viz 
  found_viz['viz'] = update_viz
  found_viz['dat'] = update_dat

  # update found_viz in database 
  db.networks.update_one( {'_id':viz_id}, {'$set': found_viz} )

  ############################
  # end database connection 
  ############################
  client.close()


  
开发者ID:aeron15,项目名称:clustergrammer,代码行数:78,代码来源:load_tsv_file.py

示例5: Network

# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import make_filtered_views [as 别名]
import time
start_time = time.time()

# import network class from Network.py
from clustergrammer import Network

net = Network()

net.load_tsv_to_net('txt/example_tsv.txt')

net.make_filtered_views(dist_type='cos',views=['N_row_sum','pct_row_sum'])

net.write_json_to_file('viz', 'json/mult_view.json', 'indent')

# your code
elapsed_time = time.time() - start_time

print('\n\n\nelapsed time')
print(elapsed_time)
开发者ID:msyinmei,项目名称:clustergrammer.js,代码行数:21,代码来源:make_clustergram.py


注:本文中的clustergrammer.Network.make_filtered_views方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。