本文整理汇总了Python中clustergrammer.Network.make_filtered_views方法的典型用法代码示例。如果您正苦于以下问题:Python Network.make_filtered_views方法的具体用法?Python Network.make_filtered_views怎么用?Python Network.make_filtered_views使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类clustergrammer.Network
的用法示例。
在下文中一共展示了Network.make_filtered_views方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import make_filtered_views [as 别名]
def main():
import time
start_time = time.time()
import pandas as pd
import StringIO
# import network class from Network.py
from clustergrammer import Network
net = Network()
# load data to dataframe
# net.load_tsv_to_net('txt/example_tsv_network.txt')
# net.load_tsv_to_net('txt/mat_1mb.txt')
# choose file
################
# file_buffer = open('txt/col_categories.txt')
file_buffer = open('txt/example_tsv_network.txt' )
buff = StringIO.StringIO( file_buffer.read() )
net.pandas_load_tsv_to_net(buff)
# filter rows
views = ['filter_row_sum','N_row_sum']
# distance metric
dist_type = 'cosine'
# linkage type
linkage_type = 'average'
net.make_filtered_views(dist_type=dist_type, views=views, calc_col_cats=True,\
linkage_type=linkage_type)
net.write_json_to_file('viz', 'json/mult_view.json', 'no-indent')
elapsed_time = time.time() - start_time
print('\n\n\nelapsed time: '+str(elapsed_time))
示例2: enrichr_clust_from_response
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import make_filtered_views [as 别名]
#.........这里部分代码省略.........
# keep enriched terms that are at the top 10 based on at least one score
keep_enr = []
for inst_enr in enr:
if inst_enr['name'] in keep_terms:
keep_enr.append(inst_enr)
# fill in full matrix
#######################
# genes
row_node_names = []
# enriched terms
col_node_names = []
# gather information from the list of enriched terms
for inst_enr in keep_enr:
col_node_names.append(inst_enr['name'])
row_node_names.extend(inst_enr['int_genes'])
row_node_names = sorted(list(set(row_node_names)))
net = Network()
net.dat['nodes']['row'] = row_node_names
net.dat['nodes']['col'] = col_node_names
net.dat['mat'] = scipy.zeros([len(row_node_names),len(col_node_names)])
for inst_enr in keep_enr:
inst_term = inst_enr['name']
col_index = col_node_names.index(inst_term)
# use combined score for full matrix - will not be seen in viz
tmp_score = scores['combined_score'][inst_term]
net.dat['node_info']['col']['value'].append(tmp_score)
for inst_gene in inst_enr['int_genes']:
row_index = row_node_names.index(inst_gene)
# save association
net.dat['mat'][row_index, col_index] = 1
# cluster full matrix
#############################
# do not make multiple views
views = ['']
print('\n\n\n')
print('net nodes')
print(net.dat['nodes']['row'])
print('\n\n\n')
if len(net.dat['nodes']['row']) > 1:
net.make_filtered_views(dist_type='jaccard', views=views, dendro=False)
else:
net.make_filtered_views(dist_type='jaccard', views=views, dendro=False, run_clustering=False)
# get dataframe from full matrix
df = net.dat_to_df()
for inst_score_type in score_types:
inst_df = deepcopy(df)
inst_net = deepcopy(Network())
inst_df['mat'] = inst_df['mat'][top_terms[inst_score_type]]
print('\n\n'+inst_score_type)
print(inst_df['mat'].shape)
print(top_terms[inst_score_type])
# load back into net
inst_net.df_to_dat(inst_df)
# make views
if len(net.dat['nodes']['row']) > 1:
inst_net.make_filtered_views(dist_type='jaccard', views=['N_row_sum'], dendro=False)
else:
inst_net.make_filtered_views(dist_type='jaccard', views=['N_row_sum'], dendro=False, run_clustering = False)
inst_views = inst_net.viz['views']
# add score_type to views
for inst_view in inst_views:
inst_view['enr_score_type'] = inst_score_type
# add values to col_nodes and order according to rank
for inst_col in inst_view['nodes']['col_nodes']:
inst_col['rank'] = len(top_terms[inst_score_type]) - \
top_terms[inst_score_type].index(inst_col['name'])
inst_name = inst_col['name']
inst_col['value'] = scores[inst_score_type][inst_name]
# add views to main network
net.viz['views'].extend(inst_views)
return net
示例3: main
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import make_filtered_views [as 别名]
def main(mongo_address, viz_id, vect_post):
from bson.objectid import ObjectId
from pymongo import MongoClient
from clustergrammer import Network
# set up database connection
client = MongoClient(mongo_address)
db = client.clustergrammer
viz_id = ObjectId(viz_id)
# get placeholder viz data
found_viz = db.networks.find_one({'_id': viz_id })
# initialize export_dat
export_dat = {}
export_viz = {}
# try to make clustegram using vect_post
try:
# ini network obj
net = Network()
# vector endpoint
net.load_vect_post_to_net(vect_post)
# swap nans for zeros
net.swap_nan_for_zero()
# deprecated clustering modules
####################################
# cluster g2e using pandas
# net.fast_mult_views()
# # calculate top views rather than percentage views
# net.N_top_views()
####################################
net.make_filtered_views(dist_type='cosine', dendro=True, \
views=['N_row_sum'], linkage_type='average')
# export dat
try:
# convert data to list
net.dat['mat'] = net.dat['mat'].tolist()
net.dat['mat_up'] = net.dat['mat_up'].tolist()
net.dat['mat_dn'] = net.dat['mat_dn'].tolist()
export_dat['dat'] = net.export_net_json('dat')
export_dat['source'] = 'g2e_enr_vect'
dat_id = db.network_data.insert( export_dat )
print('G2E: network data successfully uploaded')
except:
export_dat['dat'] = 'data-too-large'
export_dat['source'] = 'g2e_enr_vect'
dat_id = db.network_data.insert( export_dat )
print('G2E: network data too large to be uploaded')
update_viz = net.viz
update_dat = dat_id
# if there is an error update json with error
except:
print('\n--------------------------------')
print('G2E clustering error')
print('----------------------------------\n')
update_viz = 'error'
update_dat = 'error'
# export vix to database
found_viz['viz'] = update_viz
found_viz['dat'] = update_dat
# update the viz data
try:
db.networks.update_one( {"_id":viz_id}, {"$set": found_viz} )
print('\n\n---------------------------------------------------')
print( 'G2E Successfully made and uploaded clustergram')
print('---------------------------------------------------\n\n')
except:
print('\n--------------------------------')
print('G2E error in loading viz into database')
print('----------------------------------\n')
# close database connection
client.close()
示例4: main
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import make_filtered_views [as 别名]
def main( buff, inst_filename, mongo_address, viz_id):
import numpy as np
import flask
from bson.objectid import ObjectId
from pymongo import MongoClient
from flask import request
from clustergrammer import Network
import StringIO
##############################
# set up database connection
##############################
# set up connection
client = MongoClient(mongo_address)
db = client.clustergrammer
# get placeholder viz data
viz_id = ObjectId(viz_id)
found_viz = db.networks.find_one({'_id':viz_id})
try:
########################
# load and cluster
########################
# initiate class network
net = Network()
# net.load_lines_from_tsv_to_net(file_lines)
net.pandas_load_tsv_to_net(buff)
# swap nans for zero
net.swap_nan_for_zero()
# deprecated clustering module
####################################
# # fast mult views takes care of pre-filtering
# net.fast_mult_views()
####################################
net.make_filtered_views(dist_type='cosine', dendro=True, \
views=['filter_row_sum'], linkage_type='average')
###############################
# save to database
###############################
export_dat = {}
export_dat['name'] = inst_filename
export_dat['dat'] = net.export_net_json('dat')
export_dat['source'] = 'user_upload'
# save dat to separate document
dat_id = db.network_data.insert(export_dat)
update_viz = net.viz
update_dat = dat_id
except:
print('\n-----------------------')
print('error in clustering')
print('-----------------------\n')
update_viz = 'error'
update_dat = 'error'
# update found_viz
found_viz['viz'] = update_viz
found_viz['dat'] = update_dat
# update found_viz in database
db.networks.update_one( {'_id':viz_id}, {'$set': found_viz} )
############################
# end database connection
############################
client.close()
示例5: Network
# 需要导入模块: from clustergrammer import Network [as 别名]
# 或者: from clustergrammer.Network import make_filtered_views [as 别名]
import time
start_time = time.time()
# import network class from Network.py
from clustergrammer import Network
net = Network()
net.load_tsv_to_net('txt/example_tsv.txt')
net.make_filtered_views(dist_type='cos',views=['N_row_sum','pct_row_sum'])
net.write_json_to_file('viz', 'json/mult_view.json', 'indent')
# your code
elapsed_time = time.time() - start_time
print('\n\n\nelapsed time')
print(elapsed_time)