本文整理汇总了Python中bigml.api.BigML.ok方法的典型用法代码示例。如果您正苦于以下问题:Python BigML.ok方法的具体用法?Python BigML.ok怎么用?Python BigML.ok使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bigml.api.BigML
的用法示例。
在下文中一共展示了BigML.ok方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import ok [as 别名]
def main(args=sys.argv[1:]):
"""Parses command-line parameters and calls the actual main function.
"""
# Process arguments
parser = argparse.ArgumentParser(
description="JSON PML to DOT",
epilog="BigML, Inc")
# Model
parser.add_argument('--model',
type=str,
required=True,
action='store',
dest='model',
default=None,
help="Model identifier")
# Output file
parser.add_argument('--output',
type=str,
action='store',
dest='output',
default=None,
help="Output file")
# Parse args
args = parser.parse_args(args)
# Instantiate BigML API
api = BigML()
model = api.get_model(args.model)
api.ok(model)
if args.output:
output = open(args.output, 'w')
write_tree(model, output)
output.close()
else:
write_tree(model)
示例2: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import ok [as 别名]
from bigml.api import BigML
api = BigML()
source1 = api.create_source("iris.csv")
api.ok(source1)
dataset1 = api.create_dataset(source1)
api.ok(dataset1)
model1 = api.create_model(dataset1, \
{'name': u'my_model_name'})
api.ok(model1)
示例3: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import ok [as 别名]
from bigml.api import BigML
api = BigML()
source1 = api.create_source("iris.csv")
api.ok(source1)
dataset1 = api.create_dataset(source1)
api.ok(dataset1)
anomaly1 = api.create_anomaly(dataset1)
api.ok(anomaly1)
anomalyscore1 = api.create_anomaly_score(anomaly1, \
{u'petal length': 0.5,
u'petal width': 0.5,
u'sepal length': 1,
u'sepal width': 1,
u'species': u'Iris-setosa'}, \
{'name': u'my_anomaly_score_name'})
api.ok(anomalyscore1)
示例4: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import ok [as 别名]
from bigml.api import BigML
api = BigML()
source1 = api.create_source("iris.csv")
api.ok(source1)
dataset1 = api.create_dataset(source1, \
{'name': u'iris dataset'})
api.ok(dataset1)
ensemble1 = api.create_ensemble(dataset1, \
{'name': u'my_ensemble_name'})
api.ok(ensemble1)
示例5: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import ok [as 别名]
from bigml.api import BigML
api = BigML()
source1 = api.create_source("iris.csv")
api.ok(source1)
dataset1 = api.create_dataset(source1)
api.ok(dataset1)
dataset2 = api.create_dataset(dataset1, \
{'name': u"iris' dataset - sample (30.00%)",
'out_of_bag': True,
'sample_rate': 0.7})
api.ok(dataset2)
dataset3 = api.create_dataset(dataset1, \
{'name': u"iris' dataset - sample (70.00%)", 'sample_rate': 0.7})
api.ok(dataset3)
model1 = api.create_model(dataset3)
api.ok(model1)
evaluation1 = api.create_evaluation(model1, dataset2, \
{'name': u'my_evaluation_name'})
api.ok(evaluation1)
示例6: main
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import ok [as 别名]
def main(args=sys.argv[1:]):
"""Parses command-line parameters and calls the actual main function.
"""
parser = argparse.ArgumentParser(description="Market sentiment analysis", epilog="BigML, Inc")
# source with activity data
parser.add_argument("--data", action="store", dest="data", default="data", help="Full path to data with csv files")
# create private links or not
parser.add_argument("--share", action="store_true", default=True, help="Share created resources or not")
args = parser.parse_args(args)
if not args.data:
sys.exit("You need to provide a valid path to a data directory")
api = BigML()
name = "UpOrDown?"
log("Creating sources...")
csvs = glob.glob(os.path.join(args.data, "*.csv"))
sources = []
for csv in csvs:
source = api.create_source(csv)
api.ok(source)
sources.append(source)
log("Creating datasets...")
datasets = []
for source in sources:
dataset = api.create_dataset(source)
api.ok(dataset)
datasets.append(dataset)
new_datasets = []
for dataset in datasets:
new_dataset = api.create_dataset(dataset, {"new_fields": new_fields(), "all_fields": False})
new_datasets.append(new_dataset)
log("Merging datasets...")
multi_dataset = api.create_dataset(new_datasets, {"name": name})
api.ok(multi_dataset)
# Create training and test set for evaluation
log("Splitting dataset...")
training, test = training_test_split(api, multi_dataset)
log("Creating a model using the training dataset...")
model = api.create_model(training, {"name": name + " (80%)"})
api.ok(model)
# Creating an evaluation
log("Evaluating model against the test dataset...")
eval_args = {"name": name + " - Single model: 80% vs 20%"}
evaluation_model = api.create_evaluation(model, test, eval_args)
api.ok(evaluation_model)
log("Creating an ensemble using the training dataset...")
ensemble = api.create_ensemble(training, {"name": name})
api.ok(ensemble)
# Creating an evaluation
log("Evaluating ensemble against the test dataset...")
eval_args = {"name": name + " - Ensemble: 80% vs 20%"}
evaluation_ensemble = api.create_evaluation(ensemble, test, eval_args)
api.ok(evaluation_ensemble)
log("Creating model for the full dataset...")
model = api.create_model(multi_dataset, {"name": name})
api.ok(model)
# Create private links
if args.share:
log("Sharing resources...")
dataset_link = share_resource(api, multi_dataset)
model_link = share_resource(api, model)
evaluation_model_link = share_resource(api, evaluation_model)
evaluation_ensemble_link = share_resource(api, evaluation_ensemble)
log(dataset_link)
log(model_link)
log(evaluation_model_link)
log(evaluation_ensemble_link)
示例7: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import ok [as 别名]
from bigml.api import BigML
api = BigML()
source1 = api.create_source("iris_sp_chars.csv", \
{'name': 'my_sóurcè_sp_name'})
api.ok(source1)
source1 = api.update_source(source1, \
{'fields': {'000000': {'name': 'sépal.length', 'optype': 'numeric'},
'000001': {'name': 'sépal&width', 'optype': 'numeric'},
'000002': {'name': 'pétal.length', 'optype': 'numeric'},
'000003': {'name': 'pétal&width\x00', 'optype': 'numeric'},
'000004': {'name': 'spécies', 'optype': 'categorical'}}})
api.ok(source1)
示例8: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import ok [as 别名]
from bigml.api import BigML
api = BigML()
source1_file = "iris.csv"
args = \
{'fields': {'000000': {'name': 'sepal length', 'optype': 'numeric'},
'000001': {'name': 'sepal width', 'optype': 'numeric'},
'000002': {'name': 'petal length', 'optype': 'numeric'},
'000003': {'name': 'petal width', 'optype': 'numeric'},
'000004': {'name': 'species',
'optype': 'categorical',
'term_analysis': {'enabled': True}}},
}
source2 = api.create_source(source1_file, args)
api.ok(source2)
args = \
{'objective_field': {'id': '000004'},
}
dataset1 = api.create_dataset(source2, args)
api.ok(dataset1)
args = \
{'all_fields': False,
'new_fields': [{'field': '(all-but "000001")',
'names': ['sepal length',
'petal length',
'petal width',
'species']},
{'field': '2', 'names': ['new']}],
'objective_field': {'id': '000004'},
}
dataset2 = api.create_dataset(dataset1, args)
api.ok(dataset2)
示例9: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import ok [as 别名]
from bigml.api import BigML
api = BigML()
source1 = api.create_source("iris.csv")
api.ok(source1)
dataset1 = api.create_dataset(source1, \
{'name': u'my_dataset_name'})
api.ok(dataset1)
示例10: main
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import ok [as 别名]
def main(args):
print('initialize BigML API')
if args.username and args.apikey:
api = BigML(args.username,args.apikey)
else:
api = BigML()
print('generate cross validation splits')
cv_files = generate_cross_validation(args.filename,args.nfolds)
cv_datasets = []
params = {'tags':[args.tag]}
if args.objective_field >= 0:
params['objective_field'] = {'id':'%06x' % args.objective_field}
for (train_file,test_file) in cv_files:
if args.sequential:
# wait for source before creating dataset
train_source = api.create_source(train_file,params)
train_dataset = api.create_dataset(train_source,params)
if api.ok(train_dataset):
test_source = api.create_source(test_file,params)
test_dataset = api.create_dataset(test_source,params)
else:
# upload sources in parallel and create datasets in parallel
train_source = api.create_source(train_file,params)
test_source = api.create_source(test_file,params)
train_dataset = api.create_dataset(train_source,params)
test_dataset = api.create_dataset(test_source,params)
cv_datasets.append((train_dataset,test_dataset))
# don't pass objective field to model
del(params['objective_field'])
# wait for dataset creation to finish so we can find out the number of features
dataset_res = api.check_resource(cv_datasets[0][0],api.get_dataset)
dataset_obj = dataset_res['object']
# initial feature set
field_ids = dataset_obj['fields'].keys()
field_ids.remove(dataset_obj['objective_field']['id'])
initial_state = [False for id in field_ids]
# do best-first search
done = False
open_list = [(initial_state,0)]
closed_list = []
best_accuracy = -1
best_unchanged_count = 0
while not done:
(v,fv) = find_max_state(open_list)
v_ids = [field_ids[i] for (i,val) in enumerate(v) if val]
print('Max state is: %s\n Accuracy = %f' % (v_ids,fv))
closed_list.append((v,fv))
open_list.remove((v,fv))
if (fv - EPSILON) > best_accuracy:
best_state = v
best_accuracy = fv
best_unchanged_count = 0
print('new best state')
else:
best_unchanged_count += 1
children = expand_state(v)
for c in children:
if (c not in [pair[0] for pair in open_list]
and c not in [pair[0] for pair in closed_list]):
input_fields = [id for (i,id) in enumerate(field_ids) if c[i]]
print('Evaluating %s' % input_fields)
params['input_fields'] = input_fields
val = evaluate(cv_datasets,params,api,args.penalty,args.sequential)
open_list.append((c,val))
if best_unchanged_count >= args.staleness:
done = True
best_features = [field_ids[i] for (i,val) in enumerate(best_state) if val]
print('The best feature subset is: %s \n Accuracy = %0.2f%%' % (best_features,best_accuracy*100))
print('Evaluated %d/%d feature subsets' % ((len(open_list) + len(closed_list)),2**len(field_ids)))
示例11: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import ok [as 别名]
from bigml.api import BigML
api = BigML()
source1_file = "iris.csv"
args = \
{u'fields': {u'000000': {u'name': u'sepal length', u'optype': u'numeric'},
u'000001': {u'name': u'sepal width', u'optype': u'numeric'},
u'000002': {u'name': u'petal length', u'optype': u'numeric'},
u'000003': {u'name': u'petal width', u'optype': u'numeric'},
u'000004': {u'name': u'species',
u'optype': u'categorical',
u'term_analysis': {u'enabled': True}}},
}
source2 = api.create_source(source1_file, args)
api.ok(source2)
args = \
{u'objective_field': {u'id': u'000004'},
}
dataset1 = api.create_dataset(source2, args)
api.ok(dataset1)
args = \
{u'anomaly_seed': u'bigml',
u'seed': u'bigml'}
anomaly1 = api.create_anomaly(dataset1, args)
api.ok(anomaly1)
示例12: main
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import ok [as 别名]
def main(args=sys.argv[1:]):
"""Parses command-line parameters and calls the actual main function.
"""
parser = argparse.ArgumentParser(
description="Dataset analysis",
epilog="BigML, Inc")
# source with activity data
parser.add_argument('--source',
action='store',
dest='source',
default=None,
help="Full path to file")
# create private links or not
parser.add_argument('--share',
action='store_true',
default=False,
help="Share created resources or not")
# weight models or not
parser.add_argument('--balance',
action='store_true',
default=False,
help="Weight model or not")
args = parser.parse_args(args)
if not args.source:
sys.exit("You need to provide a valid path to a source")
api = BigML()
name = "Sean's activity"
log("Creating source...")
source_args = {'name': name}
source = api.create_source(args.source, source_args)
if not api.ok(source):
sys.exit("Source isn't ready...")
log("Creating dataset...")
dataset = api.create_dataset(source)
if not api.ok(dataset):
sys.exit("Dataset isn't ready...")
log("Transforming dataset...")
# Extends dataset with new field for previous activity, previous duration,
# start day, and start hour. Removes first column, start, and end fields.
new_dataset_args = {
'name': name,
'new_fields': new_fields(),
'all_but': excluded_fields()}
new_dataset = api.create_dataset(dataset, new_dataset_args)
if not api.ok(new_dataset):
sys.exit("Dataset isn't ready...")
# Set objective field to activity
fields = Fields(new_dataset['object']['fields'])
objective_id = fields.field_id('activity')
new_dataset_args = {
'objective_field': {'id': objective_id}}
new_dataset = api.update_dataset(new_dataset, new_dataset_args)
# Create training and test set for evaluation
log("Splitting dataset...")
training, test = train_test_split(api, new_dataset)
log("Creating a model using the training dataset...")
model_args = {
'objective_field': objective_id,
'balance_objective': args.balance,
'name': training['object']['name']}
model = api.create_model(training, model_args)
if not api.ok(model):
sys.exit("Model isn't ready...")
# Creating an evaluation
log("Evaluating model against the test dataset...")
eval_args = {
'name': name + ' - 80% vs 20%'}
evaluation = api.create_evaluation(model, test, eval_args)
if not api.ok(evaluation):
sys.exit("Evaluation isn't ready...")
log("Creating model for the full dataset...")
model = api.create_model(new_dataset, model_args)
if not api.ok(model):
sys.exit("Model isn't ready...")
# Create private links
if args.share:
log("Sharing resources...")
dataset_private_link = share_dataset(api, new_dataset)
model_private_link = share_model(api, model)
evaluation_private_link = share_evaluation(api, evaluation)
log(dataset_private_link)
log(model_private_link)
log(evaluation_private_link)
示例13: Cluster
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import ok [as 别名]
#.........这里部分代码省略.........
"""
return self.critical_value is not None
def fill_numeric_defaults(self, input_data, average="mean"):
"""Checks whether input data is missing a numeric field and
fills it with the average quantity provided in the
``average`` parameter
"""
for field_id, field in self.fields.items():
if (field_id not in self.summary_fields and \
field['optype'] not in OPTIONAL_FIELDS and
field_id not in input_data):
if average not in NUMERIC_DEFAULTS:
raise ValueError("The available defaults are: %s" % \
", ".join(NUMERIC_DEFAULTS))
default_value = 0 if average == "zero" \
else field['summary'].get(average)
input_data[field_id] = default_value
return input_data
def get_unique_terms(self, input_data):
"""Parses the input data to find the list of unique terms in the
tag cloud
"""
unique_terms = {}
for field_id in self.term_forms:
if field_id in input_data:
input_data_field = input_data.get(field_id, '')
if isinstance(input_data_field, basestring):
case_sensitive = self.term_analysis[field_id].get(
'case_sensitive', True)
token_mode = self.term_analysis[field_id].get(
'token_mode', 'all')
if token_mode != TM_FULL_TERM:
terms = parse_terms(input_data_field,
case_sensitive=case_sensitive)
else:
terms = []
if token_mode != TM_TOKENS:
terms.append(
input_data_field if case_sensitive
else input_data_field.lower())
unique_terms[field_id] = get_unique_terms(
terms, self.term_forms[field_id],
self.tag_clouds.get(field_id, []))
else:
unique_terms[field_id] = input_data_field
del input_data[field_id]
# the same for items fields
for field_id in self.item_analysis:
if field_id in input_data:
input_data_field = input_data.get(field_id, '')
if isinstance(input_data_field, basestring):
# parsing the items in input_data
separator = self.item_analysis[field_id].get(
'separator', ' ')
regexp = self.item_analysis[field_id].get(
'separator_regexp')
if regexp is None:
regexp = ur'%s' % re.escape(separator)
terms = parse_items(input_data_field, regexp)
unique_terms[field_id] = get_unique_terms(
terms, {},
self.items.get(field_id, []))
示例14: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import ok [as 别名]
from bigml.api import BigML
api = BigML()
source1 = api.create_source("iris.csv")
api.ok(source1)
dataset1 = api.create_dataset(source1)
api.ok(dataset1)
cluster1 = api.create_cluster(dataset1)
api.ok(cluster1)
batchcentroid1 = api.create_batch_centroid(cluster1, dataset1, {"name": u"my_batch_centroid_name"})
api.ok(batchcentroid1)
示例15: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import ok [as 别名]
from bigml.api import BigML
api = BigML()
source1_file = "iris_sp_chars.csv"
args = \
{'fields': {'000000': {'name': 'sépal.length', 'optype': 'numeric'},
'000001': {'name': 'sépal&width', 'optype': 'numeric'},
'000002': {'name': 'pétal.length', 'optype': 'numeric'},
'000003': {'name': 'pétal&width\x00', 'optype': 'numeric'},
'000004': {'name': 'spécies',
'optype': 'categorical',
'term_analysis': {'enabled': True}}},
}
source2 = api.create_source(source1_file, args)
api.ok(source2)