本文整理汇总了Python中bigml.api.BigML.create_dataset方法的典型用法代码示例。如果您正苦于以下问题:Python BigML.create_dataset方法的具体用法?Python BigML.create_dataset怎么用?Python BigML.create_dataset使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bigml.api.BigML
的用法示例。
在下文中一共展示了BigML.create_dataset方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: bigml
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_dataset [as 别名]
def bigml( train_csv, test_csv, result_csv ):
api = BigML(dev_mode=True)
# train model
start_training = timer()
source_train = api.create_source(train_csv)
dataset_train = api.create_dataset(source_train)
model = api.create_model(dataset_train)
end_training = timer()
print('Training model.')
print('Training took %i Seconds.' % (end_training - start_training) );
# test create_model
start_test = timer()
source_test = api.create_source(test_csv)
dataset_test = api.create_dataset(source_test)
batch_prediction = api.create_batch_prediction(
model,
dataset_test,
{
"name": "census prediction",
"all_fields": True,
"header": False,
"confidence": False
}
)
# wait until batch processing is finished
while api.get_batch_prediction(batch_prediction)['object']['status']['progress'] != 1:
print api.get_batch_prediction(batch_prediction)['object']['status']['progress']
time.sleep(1)
end_test = timer()
print('Testing took %i Seconds' % (end_test - start_test) );
api.download_batch_prediction(batch_prediction['resource'], filename=result_csv)
# cleanup
api.delete_source(source_train)
api.delete_source(source_test)
api.delete_dataset(dataset_train)
api.delete_dataset(dataset_test)
api.delete_model(model)
示例2: BigMLAPIMixIn
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_dataset [as 别名]
class BigMLAPIMixIn(object):
BIGML_AUTH_ERRMSG = (
"{errtype:s} BigML credentials. Please supply "
"BIGML_USERNAME and BIGML_API_KEY as either Scrapy "
"settings or environment variables."
)
# XXX: This should get a method to read BigML configuration from settings
def get_bigml_api(self, *args, **kwargs):
try:
self.bigml = BigML(*args, **kwargs)
except AttributeError:
raise NotConfigured(self.BIGML_AUTH_ERRMSG.format(errtype="Missing"))
if not self.check_bigml_auth():
raise NotConfigured(self.BIGML_AUTH_ERRMSG.format(errtype="Invalid"))
def check_bigml_auth(self):
return self.bigml.list_projects("limit=1")["code"] == 200
def export_to_bigml(self, path, name, as_dataset=False):
source = self.bigml.create_source(file, {"name": name})
if not as_dataset:
return source
return self.bigml.create_dataset(source, {"name": name})
示例3: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_dataset [as 别名]
api = BigML()
source1_file = "iris.csv"
args = \
{u'fields': {u'000000': {u'name': u'sepal length', u'optype': u'numeric'},
u'000001': {u'name': u'sepal width', u'optype': u'numeric'},
u'000002': {u'name': u'petal length', u'optype': u'numeric'},
u'000003': {u'name': u'petal width', u'optype': u'numeric'},
u'000004': {u'name': u'species',
u'optype': u'categorical',
u'term_analysis': {u'enabled': True}}}}
source2 = api.create_source(source1_file, args)
api.ok(source2)
args = \
{u'objective_field': {u'id': u'000004'}}
dataset1 = api.create_dataset(source2, args)
api.ok(dataset1)
args = \
{u'cluster_seed': u'bigml', u'critical_value': 5}
cluster1 = api.create_cluster(dataset1, args)
api.ok(cluster1)
args = \
{u'fields_map': {u'000000': u'000000',
u'000001': u'000001',
u'000002': u'000002',
u'000003': u'000003',
u'000004': u'000004'},
u'output_dataset': True}
batchcentroid1 = api.create_batch_centroid(cluster1, dataset1, args)
示例4: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_dataset [as 别名]
from bigml.api import BigML
api = BigML()
source1 = api.create_source("iris.csv")
api.ok(source1)
dataset1 = api.create_dataset(source1, \
{'name': u'my_dataset_name'})
api.ok(dataset1)
示例5: main
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_dataset [as 别名]
def main(args=sys.argv[1:]):
"""Parses command-line parameters and calls the actual main function.
"""
parser = argparse.ArgumentParser(description="Market sentiment analysis", epilog="BigML, Inc")
# source with activity data
parser.add_argument("--data", action="store", dest="data", default="data", help="Full path to data with csv files")
# create private links or not
parser.add_argument("--share", action="store_true", default=True, help="Share created resources or not")
args = parser.parse_args(args)
if not args.data:
sys.exit("You need to provide a valid path to a data directory")
api = BigML()
name = "UpOrDown?"
log("Creating sources...")
csvs = glob.glob(os.path.join(args.data, "*.csv"))
sources = []
for csv in csvs:
source = api.create_source(csv)
api.ok(source)
sources.append(source)
log("Creating datasets...")
datasets = []
for source in sources:
dataset = api.create_dataset(source)
api.ok(dataset)
datasets.append(dataset)
new_datasets = []
for dataset in datasets:
new_dataset = api.create_dataset(dataset, {"new_fields": new_fields(), "all_fields": False})
new_datasets.append(new_dataset)
log("Merging datasets...")
multi_dataset = api.create_dataset(new_datasets, {"name": name})
api.ok(multi_dataset)
# Create training and test set for evaluation
log("Splitting dataset...")
training, test = training_test_split(api, multi_dataset)
log("Creating a model using the training dataset...")
model = api.create_model(training, {"name": name + " (80%)"})
api.ok(model)
# Creating an evaluation
log("Evaluating model against the test dataset...")
eval_args = {"name": name + " - Single model: 80% vs 20%"}
evaluation_model = api.create_evaluation(model, test, eval_args)
api.ok(evaluation_model)
log("Creating an ensemble using the training dataset...")
ensemble = api.create_ensemble(training, {"name": name})
api.ok(ensemble)
# Creating an evaluation
log("Evaluating ensemble against the test dataset...")
eval_args = {"name": name + " - Ensemble: 80% vs 20%"}
evaluation_ensemble = api.create_evaluation(ensemble, test, eval_args)
api.ok(evaluation_ensemble)
log("Creating model for the full dataset...")
model = api.create_model(multi_dataset, {"name": name})
api.ok(model)
# Create private links
if args.share:
log("Sharing resources...")
dataset_link = share_resource(api, multi_dataset)
model_link = share_resource(api, model)
evaluation_model_link = share_resource(api, evaluation_model)
evaluation_ensemble_link = share_resource(api, evaluation_ensemble)
log(dataset_link)
log(model_link)
log(evaluation_model_link)
log(evaluation_ensemble_link)
示例6: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_dataset [as 别名]
api = BigML()
source1_file = "iris.csv"
args = \
{u'fields': {u'000000': {u'name': u'sepal length', u'optype': u'numeric'},
u'000001': {u'name': u'sepal width', u'optype': u'numeric'},
u'000002': {u'name': u'petal length', u'optype': u'numeric'},
u'000003': {u'name': u'petal width', u'optype': u'numeric'},
u'000004': {u'name': u'species',
u'optype': u'categorical',
u'term_analysis': {u'enabled': True}}}}
source2 = api.create_source(source1_file, args)
api.ok(source2)
args = \
{u'objective_field': {u'id': u'000004'}}
dataset1 = api.create_dataset(source2, args)
api.ok(dataset1)
args = \
{u'anomaly_seed': u'bigml', u'seed': u'bigml'}
anomaly1 = api.create_anomaly(dataset1, args)
api.ok(anomaly1)
args = \
{u'fields_map': {u'000000': u'000000',
u'000001': u'000001',
u'000002': u'000002',
u'000003': u'000003',
u'000004': u'000004'},
u'output_dataset': True}
batchanomalyscore1 = api.create_batch_anomaly_score(anomaly1, dataset1, args)
示例7: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_dataset [as 别名]
from bigml.api import BigML
# <codecell>
# Create a BigML instance
api = BigML()
# <codecell>
# Create source instance with train dataset
train_source = api.create_source('train.csv')
# <codecell>
# Create a BigML dataset from source instance
train_dataset = api.create_dataset(train_source)
# <codecell>
# Fit a model to the dataset
model = api.create_ensemble(train_dataset)
# <codecell>
# Read the test dataset
test_X = pd.read_csv('test.csv')
test_y = pd.read_csv('test_target.csv')
test_set = test_X.T.to_dict().values()
# <codecell>
示例8: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_dataset [as 别名]
from bigml.api import BigML
api = BigML()
source1 = api.create_source("iris.csv")
api.ok(source1)
dataset1 = api.create_dataset(source1)
api.ok(dataset1)
dataset2 = api.create_dataset(dataset1, \
{'name': u"iris' dataset - sample (30.00%)",
'out_of_bag': True,
'sample_rate': 0.7})
api.ok(dataset2)
dataset3 = api.create_dataset(dataset1, \
{'name': u"iris' dataset - sample (70.00%)", 'sample_rate': 0.7})
api.ok(dataset3)
model1 = api.create_model(dataset3)
api.ok(model1)
evaluation1 = api.create_evaluation(model1, dataset2, \
{'name': u'my_evaluation_name'})
api.ok(evaluation1)
示例9: main
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_dataset [as 别名]
def main(args=sys.argv[1:]):
"""Parses command-line parameters and calls the actual main function.
"""
parser = argparse.ArgumentParser(
description="Dataset analysis",
epilog="BigML, Inc")
# source with activity data
parser.add_argument('--source',
action='store',
dest='source',
default=None,
help="Full path to file")
# create private links or not
parser.add_argument('--share',
action='store_true',
default=False,
help="Share created resources or not")
# weight models or not
parser.add_argument('--balance',
action='store_true',
default=False,
help="Weight model or not")
args = parser.parse_args(args)
if not args.source:
sys.exit("You need to provide a valid path to a source")
api = BigML()
name = "Sean's activity"
log("Creating source...")
source_args = {'name': name}
source = api.create_source(args.source, source_args)
if not api.ok(source):
sys.exit("Source isn't ready...")
log("Creating dataset...")
dataset = api.create_dataset(source)
if not api.ok(dataset):
sys.exit("Dataset isn't ready...")
log("Transforming dataset...")
# Extends dataset with new field for previous activity, previous duration,
# start day, and start hour. Removes first column, start, and end fields.
new_dataset_args = {
'name': name,
'new_fields': new_fields(),
'all_but': excluded_fields()}
new_dataset = api.create_dataset(dataset, new_dataset_args)
if not api.ok(new_dataset):
sys.exit("Dataset isn't ready...")
# Set objective field to activity
fields = Fields(new_dataset['object']['fields'])
objective_id = fields.field_id('activity')
new_dataset_args = {
'objective_field': {'id': objective_id}}
new_dataset = api.update_dataset(new_dataset, new_dataset_args)
# Create training and test set for evaluation
log("Splitting dataset...")
training, test = train_test_split(api, new_dataset)
log("Creating a model using the training dataset...")
model_args = {
'objective_field': objective_id,
'balance_objective': args.balance,
'name': training['object']['name']}
model = api.create_model(training, model_args)
if not api.ok(model):
sys.exit("Model isn't ready...")
# Creating an evaluation
log("Evaluating model against the test dataset...")
eval_args = {
'name': name + ' - 80% vs 20%'}
evaluation = api.create_evaluation(model, test, eval_args)
if not api.ok(evaluation):
sys.exit("Evaluation isn't ready...")
log("Creating model for the full dataset...")
model = api.create_model(new_dataset, model_args)
if not api.ok(model):
sys.exit("Model isn't ready...")
# Create private links
if args.share:
log("Sharing resources...")
dataset_private_link = share_dataset(api, new_dataset)
model_private_link = share_model(api, model)
evaluation_private_link = share_evaluation(api, evaluation)
log(dataset_private_link)
log(model_private_link)
log(evaluation_private_link)
示例10: Cluster
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_dataset [as 别名]
#.........这里部分代码省略.........
# Checks and cleans input_data leaving the fields used in the model
reference_point, _ = self._prepare_for_distance( \
reference_point, by_name=by_name)
# mimic centroid structure to use it in distance computation
point_info = {"center": reference_point}
reference = Centroid(point_info)
distances = []
for point in list_of_points:
centroid_id = None
if isinstance(point, Centroid):
centroid_id = point.centroid_id
point = point.center
by_name = False
clean_point, unique_terms = self._prepare_for_distance( \
point, by_name=by_name)
if clean_point != reference_point:
result = {"data": point, "distance": reference.distance2( \
clean_point, unique_terms, self.scales)}
if centroid_id is not None:
result.update({"centroid_id": centroid_id})
distances.append(result)
return distances
def points_in_cluster(self, centroid_id):
"""Returns the list of data points that fall in one cluster.
"""
cluster_datasets = self.datasets
centroid_dataset = cluster_datasets.get(centroid_id)
if self.api is None:
self.api = BigML(storage=STORAGE)
if centroid_dataset in [None, ""]:
centroid_dataset = self.api.create_dataset( \
self.resource_id, {"centroid": centroid_id})
self.api.ok(centroid_dataset)
else:
centroid_dataset = self.api.check_resource( \
"dataset/%s" % centroid_dataset)
# download dataset to compute local predictions
downloaded_data = self.api.download_dataset( \
centroid_dataset["resource"])
if PY3:
text_reader = codecs.getreader("utf-8")
downloaded_data = text_reader(downloaded_data)
reader = csv.DictReader(downloaded_data)
points = []
for row in reader:
points.append(row)
return points
def closest_in_cluster(self, reference_point,
number_of_points=None,
centroid_id=None,
by_name=True):
"""Computes the list of data points closer to a reference point.
If no centroid_id information is provided, the points are chosen
from the same cluster as the reference point.
The points are returned in a list, sorted according
to their distance to the reference point. The number_of_points
parameter can be set to truncate the list to a maximum number of
results. The response is a dictionary that contains the
centroid id of the cluster plus the list of points
"""
if centroid_id is not None and centroid_id not in \
[centroid.centroid_id for centroid in self.centroids]:
示例11: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_dataset [as 别名]
from bigml.api import BigML
api = BigML()
source1 = api.create_source("iris.csv")
api.ok(source1)
dataset1 = api.create_dataset(source1)
api.ok(dataset1)
cluster1 = api.create_cluster(dataset1)
api.ok(cluster1)
batchcentroid1 = api.create_batch_centroid(cluster1, dataset1, \
{'output_dataset': True})
api.ok(batchcentroid1)
dataset2 = api.create_dataset(batchcentroid1)
api.ok(dataset2)
dataset2 = api.get_dataset(batchcentroid1)
api.ok(dataset2)
dataset2 = api.update_dataset(dataset2, \
{'fields': {u'000000': {'name': u'cluster'}}})
api.ok(dataset2)
dataset3 = api.create_dataset(dataset2, \
{'input_fields': [u'000000'],
'name': u'my_dataset_from_dataset_from_batch_centroid_name',
'new_fields': [{'field': u'( integer ( replace ( field "cluster" ) "Cluster " "" ) )',
u'name': u'Cluster'}]})
示例12: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_dataset [as 别名]
from bigml.api import BigML
api = BigML()
source1 = api.create_source("iris.csv")
api.ok(source1)
dataset1 = api.create_dataset(source1, {"name": u"iris dataset"})
api.ok(dataset1)
cluster1 = api.create_cluster(dataset1, {"name": u"my_cluster_name"})
api.ok(cluster1)
示例13: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_dataset [as 别名]
from bigml.api import BigML
import csv
import time
api = BigML(dev_mode=True)
# get args
train_csv = sys.argv[1]
test_csv = sys.argv[2]
# train model
source_train = api.create_source('./../../data/census/train.csv')
dataset_train = api.create_dataset(dataset_train)
model = api.create_model(dataset)
# test model
with open('./data/census/test.csv', 'rb') as csv_test_file:
test_csv_reader = csv.reader(csv_test_file, delimiter=',', quotechar='"')
for row in test_csv_reader:
row.pop()
row = dict(zip(range(0, len(row)), row))
prediction = api.create_prediction(model, row)
api.pprint(prediction)
示例14: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_dataset [as 别名]
from bigml.api import BigML
api = BigML()
source1 = api.create_source("iris.csv")
api.ok(source1)
dataset1 = api.create_dataset(source1, \
{'name': 'iris'})
api.ok(dataset1)
cluster1 = api.create_cluster(dataset1, \
{'name': 'iris'})
api.ok(cluster1)
batchcentroid1 = api.create_batch_centroid(cluster1, dataset1, \
{'name': 'iris dataset with iris', 'output_dataset': True})
api.ok(batchcentroid1)
dataset2 = api.get_dataset(batchcentroid1['object']['output_dataset_resource'])
api.ok(dataset2)
dataset2 = api.update_dataset(dataset2, \
{'name': 'iris dataset with iris'})
api.ok(dataset2)
dataset3 = api.create_dataset(dataset2, \
{'name': 'my_dataset_from_dataset_from_batch_centroid_name',
'new_fields': [{'field': '( integer ( replace ( field "cluster" ) '
'"Cluster " "" ) )',
'name': 'Cluster'}],
'objective_field': {'id': '100000'}})
示例15: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_dataset [as 别名]
#@see: http://bigml.readthedocs.org/en/latest/#local-predictions
from bigml.api import BigML
api = BigML('smarkit',"37b903bf765414b5e1c3164061cee5fa57e7e6ad",storage='./storage')
source = api.create_source('./data/red_bule_balls_2003.csv')
api.pprint(api.get_fields(source))
dataset = api.create_dataset(source)
model = api.create_model(dataset)
prediction = api.create_prediction(model, {'red':[1,2,3,4,5,6],'blue':7})
#prediction
api.pprint(prediction)