当前位置: 首页>>代码示例>>Python>>正文


Python BigML.get_dataset方法代码示例

本文整理汇总了Python中bigml.api.BigML.get_dataset方法的典型用法代码示例。如果您正苦于以下问题:Python BigML.get_dataset方法的具体用法?Python BigML.get_dataset怎么用?Python BigML.get_dataset使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在bigml.api.BigML的用法示例。


在下文中一共展示了BigML.get_dataset方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1:

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import get_dataset [as 别名]
 api.ok(source2)
 
 args = \
     {u'objective_field': {u'id': u'000004'}}
 dataset1 = api.create_dataset(source2, args)
 api.ok(dataset1)
 
 args = \
     {u'anomaly_seed': u'bigml', u'seed': u'bigml'}
 anomaly1 = api.create_anomaly(dataset1, args)
 api.ok(anomaly1)
 
 args = \
     {u'fields_map': {u'000000': u'000000',
                      u'000001': u'000001',
                      u'000002': u'000002',
                      u'000003': u'000003',
                      u'000004': u'000004'},
      u'output_dataset': True}
 batchanomalyscore1 = api.create_batch_anomaly_score(anomaly1, dataset1, args)
 api.ok(batchanomalyscore1)
 
 dataset2 = api.get_dataset(batchanomalyscore1["object"]["output_dataset_resource"])
 api.ok(dataset2)
 
 args = \
     {u'fields': {u'100000': {u'name': u'score', u'preferred': True}},
      u'objective_field': {u'id': u'100000'}}
 dataset3 = api.update_dataset(dataset2, args)
 api.ok(dataset3)
 
开发者ID:shantanusharma,项目名称:bigmler,代码行数:32,代码来源:reify_batch_anomaly_score_dataset.py

示例2: BigML

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import get_dataset [as 别名]
from bigml.api import BigML
api = BigML()

source1 = api.create_source("iris.csv")
api.ok(source1)

dataset1 = api.create_dataset(source1, \
    {'name': u'iris dataset'})
api.ok(dataset1)

anomaly1 = api.create_anomaly(dataset1, \
    {'name': u"iris dataset's anomaly detector"})
api.ok(anomaly1)

batchanomalyscore1 = api.create_batch_anomaly_score(anomaly1, dataset1, \
    {'name': u"Batch Anomaly Score of iris dataset's anomaly detector with iris dataset",
     'output_dataset': True})
api.ok(batchanomalyscore1)

dataset2 = api.get_dataset(batchanomalyscore1['object']['output_dataset_resource'])
api.ok(dataset2)

dataset2 = api.update_dataset(dataset2, \
    {'fields': {u'000000': {'name': u'score'}},
     'name': u'my_dataset_from_batch_anomaly_score_name'})
api.ok(dataset2)
开发者ID:davideflo,项目名称:bigmler,代码行数:28,代码来源:reify_batch_anomaly_score_dataset.py

示例3: integer

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import get_dataset [as 别名]
    source1 = api.create_source("iris.csv")
    api.ok(source1)

    dataset1 = api.create_dataset(source1, \
        {'name': 'iris'})
    api.ok(dataset1)

    cluster1 = api.create_cluster(dataset1, \
        {'name': 'iris'})
    api.ok(cluster1)

    batchcentroid1 = api.create_batch_centroid(cluster1, dataset1, \
        {'name': 'iris dataset with iris', 'output_dataset': True})
    api.ok(batchcentroid1)

    dataset2 = api.get_dataset(batchcentroid1['object']['output_dataset_resource'])
    api.ok(dataset2)

    dataset2 = api.update_dataset(dataset2, \
        {'name': 'iris dataset with iris'})
    api.ok(dataset2)

    dataset3 = api.create_dataset(dataset2, \
        {'name': 'my_dataset_from_dataset_from_batch_centroid_name',
         'new_fields': [{'field': '( integer ( replace ( field "cluster" ) '
                                  '"Cluster " "" ) )',
                         'name': 'Cluster'}],
     'objective_field': {'id': '100000'}})
    api.ok(dataset3)
开发者ID:mmerce,项目名称:bigmler,代码行数:31,代码来源:reify_batch_centroid_dataset_dataset_py3.py

示例4: integer

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import get_dataset [as 别名]
    args = \
        {u'cluster_seed': u'bigml', u'critical_value': 5}
    cluster1 = api.create_cluster(dataset1, args)
    api.ok(cluster1)

    args = \
        {u'fields_map': {u'000000': u'000000',
                         u'000001': u'000001',
                         u'000002': u'000002',
                         u'000003': u'000003',
                         u'000004': u'000004'},
         u'output_dataset': True}
    batchcentroid1 = api.create_batch_centroid(cluster1, dataset1, args)
    api.ok(batchcentroid1)

    dataset2 = api.get_dataset(batchcentroid1["object"]["output_dataset_resource"])
    api.ok(dataset2)

    args = \
        {u'fields': {u'100000': {u'name': u'cluster', u'preferred': True}},
         u'objective_field': {u'id': u'100000'}}
    dataset3 = api.update_dataset(dataset2, args)
    api.ok(dataset3)

    args = \
        {u'all_fields': False,
         u'new_fields': [{u'field': u'(all)', u'names': [u'cluster']},
                         {u'field': u'( integer ( replace ( field "cluster" ) "Cluster " "" ) )',
                          u'names': [u'Cluster']}],
         u'objective_field': {u'id': u'100000'}}
    dataset4 = api.create_dataset(dataset3, args)
开发者ID:shantanusharma,项目名称:bigmler,代码行数:33,代码来源:reify_batch_centroid_dataset_dataset.py

示例5:

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import get_dataset [as 别名]
 api.ok(source2)
 
 args = \
     {u'objective_field': {u'id': u'000004'}}
 dataset1 = api.create_dataset(source2, args)
 api.ok(dataset1)
 
 args = \
     {u'split_candidates': 32}
 model1 = api.create_model(dataset1, args)
 api.ok(model1)
 
 args = \
     {u'fields_map': {u'000001': u'000001',
                      u'000002': u'000002',
                      u'000003': u'000003',
                      u'000004': u'000004'},
      u'operating_kind': u'probability',
      u'output_dataset': True}
 batchprediction1 = api.create_batch_prediction(model1, dataset1, args)
 api.ok(batchprediction1)
 
 dataset2 = api.get_dataset(batchprediction1["object"]["output_dataset_resource"])
 api.ok(dataset2)
 
 args = \
     {u'fields': {u'100000': {u'name': u'species', u'preferred': True}},
      u'objective_field': {u'id': u'100000'}}
 dataset3 = api.update_dataset(dataset2, args)
 api.ok(dataset3)
 
开发者ID:shantanusharma,项目名称:bigmler,代码行数:32,代码来源:reify_batch_prediction_dataset.py

示例6: integer

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import get_dataset [as 别名]
source1 = api.create_source("iris.csv")
api.ok(source1)

dataset1 = api.create_dataset(source1)
api.ok(dataset1)

cluster1 = api.create_cluster(dataset1)
api.ok(cluster1)

batchcentroid1 = api.create_batch_centroid(cluster1, dataset1, \
    {'output_dataset': True})
api.ok(batchcentroid1)

dataset2 = api.create_dataset(batchcentroid1)
api.ok(dataset2)

dataset2 = api.get_dataset(batchcentroid1)
api.ok(dataset2)

dataset2 = api.update_dataset(dataset2, \
    {'fields': {u'000000': {'name': u'cluster'}}})
api.ok(dataset2)

dataset3 = api.create_dataset(dataset2, \
    {'input_fields': [u'000000'],
     'name': u'my_dataset_from_dataset_from_batch_centroid_name',
     'new_fields': [{'field': u'( integer ( replace ( field "cluster" ) "Cluster " "" ) )',
                     u'name': u'Cluster'}]})
api.ok(dataset3)
开发者ID:Pkuzhali,项目名称:bigmler,代码行数:31,代码来源:reify_batch_centroid_dataset_dataset.py


注:本文中的bigml.api.BigML.get_dataset方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。