当前位置: 首页>>代码示例>>Python>>正文


Python BigML.create_model方法代码示例

本文整理汇总了Python中bigml.api.BigML.create_model方法的典型用法代码示例。如果您正苦于以下问题:Python BigML.create_model方法的具体用法?Python BigML.create_model怎么用?Python BigML.create_model使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在bigml.api.BigML的用法示例。


在下文中一共展示了BigML.create_model方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: bigml

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_model [as 别名]
def bigml( train_csv, test_csv, result_csv ):

    api = BigML(dev_mode=True)

    # train model
    start_training = timer()

    source_train = api.create_source(train_csv)
    dataset_train = api.create_dataset(source_train)
    model = api.create_model(dataset_train)

    end_training = timer()
    print('Training model.')
    print('Training took %i Seconds.' % (end_training - start_training) ); 

    # test create_model
    start_test = timer()

    source_test = api.create_source(test_csv)
    dataset_test = api.create_dataset(source_test)

    batch_prediction = api.create_batch_prediction(
        model, 
        dataset_test,
        {
            "name": "census prediction", 
            "all_fields": True,
            "header": False,
            "confidence": False
        }
    )

    # wait until batch processing is finished
    while api.get_batch_prediction(batch_prediction)['object']['status']['progress'] != 1:
        print api.get_batch_prediction(batch_prediction)['object']['status']['progress']
        time.sleep(1)

    end_test = timer()
    print('Testing took %i Seconds' % (end_test - start_test) ); 

    api.download_batch_prediction(batch_prediction['resource'], filename=result_csv)

    # cleanup
    api.delete_source(source_train)
    api.delete_source(source_test)
    api.delete_dataset(dataset_train)
    api.delete_dataset(dataset_test)
    api.delete_model(model)
开发者ID:marcharding,项目名称:ml-saas-comparison,代码行数:50,代码来源:saas_bigml.py

示例2: BigML

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_model [as 别名]
from bigml.api import BigML

api = BigML()

source1 = api.create_source("iris.csv")
api.ok(source1)

dataset1 = api.create_dataset(source1)
api.ok(dataset1)

model1 = api.create_model(dataset1)
api.ok(model1)

batchprediction1 = api.create_batch_prediction(model1, dataset1, {"name": u"my_batch_prediction_name"})
api.ok(batchprediction1)
开发者ID:Pkuzhali,项目名称:bigmler,代码行数:17,代码来源:reify_batch_prediction.py

示例3: BigML

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_model [as 别名]
from bigml.api import BigML
api = BigML()

source1 = api.create_source("iris.csv")
api.ok(source1)

dataset1 = api.create_dataset(source1, \
    {'name': u'iris'})
api.ok(dataset1)

model1 = api.create_model(dataset1, \
    {'name': u'iris'})
api.ok(model1)

prediction1 = api.create_prediction(model1, \
    {u'petal length': 0.5}, \
    {'name': u'my_prediction_name'})
api.ok(prediction1)
开发者ID:mmerce,项目名称:bigmler,代码行数:20,代码来源:reify_prediction.py

示例4: BigML

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_model [as 别名]
#@see: http://bigml.readthedocs.org/en/latest/#local-predictions
from bigml.api import BigML
api = BigML('smarkit',"37b903bf765414b5e1c3164061cee5fa57e7e6ad",storage='./storage')

source = api.create_source('./data/red_bule_balls_2003.csv')
api.pprint(api.get_fields(source))
dataset = api.create_dataset(source)
model = api.create_model(dataset)
prediction = api.create_prediction(model, {'red':[1,2,3,4,5,6],'blue':7})
#prediction
api.pprint(prediction)
开发者ID:daiyoko,项目名称:LotteryPrediction,代码行数:13,代码来源:BigML.py

示例5: BigML

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_model [as 别名]
from bigml.api import BigML
api = BigML()

source1 = api.create_source("iris.csv")
api.ok(source1)

dataset1 = api.create_dataset(source1)
api.ok(dataset1)

model1 = api.create_model(dataset1, \
    {'name': u'my_model_name'})
api.ok(model1)
开发者ID:Pkuzhali,项目名称:bigmler,代码行数:14,代码来源:reify_model.py

示例6: BigML

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_model [as 别名]
 from bigml.api import BigML
 api = BigML()
 source1_file = "iris.csv"
 args = \
     {u'fields': {u'000000': {u'name': u'sepal length', u'optype': u'numeric'},
                  u'000001': {u'name': u'sepal width', u'optype': u'numeric'},
                  u'000002': {u'name': u'petal length', u'optype': u'numeric'},
                  u'000003': {u'name': u'petal width', u'optype': u'numeric'},
                  u'000004': {u'name': u'species',
                              u'optype': u'categorical',
                              u'term_analysis': {u'enabled': True}}},
      }
 source2 = api.create_source(source1_file, args)
 api.ok(source2)
 
 args = \
     {u'objective_field': {u'id': u'000004'},
      }
 dataset1 = api.create_dataset(source2, args)
 api.ok(dataset1)
 
 args = \
     {u'split_candidates': 32}
 model1 = api.create_model(dataset1, args)
 api.ok(model1)
 
开发者ID:shantanusharma,项目名称:bigmler,代码行数:27,代码来源:reify_model.py

示例7: main

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_model [as 别名]
def main(args=sys.argv[1:]):
    """Parses command-line parameters and calls the actual main function.

    """
    parser = argparse.ArgumentParser(
        description="Dataset analysis",
        epilog="BigML, Inc")

    # source with activity data
    parser.add_argument('--source',
                        action='store',
                        dest='source',
                        default=None,
                        help="Full path to file")

    # create private links or not
    parser.add_argument('--share',
                        action='store_true',
                        default=False,
                        help="Share created resources or not")

    # weight models or not
    parser.add_argument('--balance',
                        action='store_true',
                        default=False,
                        help="Weight model or not")

    args = parser.parse_args(args)

    if not args.source:
        sys.exit("You need to provide a valid path to a source")

    api = BigML()

    name = "Sean's activity"

    log("Creating source...")
    source_args = {'name': name}
    source = api.create_source(args.source, source_args)
    if not api.ok(source):
        sys.exit("Source isn't ready...")

    log("Creating dataset...")
    dataset = api.create_dataset(source)
    if not api.ok(dataset):
        sys.exit("Dataset isn't ready...")

    log("Transforming dataset...")
    # Extends dataset with new field for previous activity, previous duration,
    # start day, and start hour. Removes first column, start, and end fields.
    new_dataset_args = {
        'name': name,
        'new_fields': new_fields(),
        'all_but': excluded_fields()}
    new_dataset = api.create_dataset(dataset, new_dataset_args)
    if not api.ok(new_dataset):
        sys.exit("Dataset isn't ready...")

    # Set objective field to activity
    fields = Fields(new_dataset['object']['fields'])
    objective_id = fields.field_id('activity')
    new_dataset_args = {
        'objective_field': {'id': objective_id}}
    new_dataset = api.update_dataset(new_dataset, new_dataset_args)

    # Create training and test set for evaluation
    log("Splitting dataset...")
    training, test = train_test_split(api, new_dataset)

    log("Creating a model using the training dataset...")
    model_args = {
        'objective_field': objective_id,
        'balance_objective': args.balance,
        'name': training['object']['name']}
    model = api.create_model(training, model_args)
    if not api.ok(model):
        sys.exit("Model isn't ready...")

    # Creating an evaluation
    log("Evaluating model against the test dataset...")
    eval_args = {
        'name': name + ' - 80% vs 20%'}
    evaluation = api.create_evaluation(model, test, eval_args)
    if not api.ok(evaluation):
        sys.exit("Evaluation isn't ready...")

    log("Creating model for the full dataset...")
    model = api.create_model(new_dataset, model_args)
    if not api.ok(model):
        sys.exit("Model isn't ready...")

    # Create private links
    if args.share:
        log("Sharing resources...")
        dataset_private_link = share_dataset(api, new_dataset)
        model_private_link = share_model(api, model)
        evaluation_private_link = share_evaluation(api, evaluation)
        log(dataset_private_link)
        log(model_private_link)
        log(evaluation_private_link)
开发者ID:aficionado,项目名称:nextactivity,代码行数:102,代码来源:next_activity.py

示例8: main

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_model [as 别名]
def main(args=sys.argv[1:]):
    """Parses command-line parameters and calls the actual main function.

    """
    parser = argparse.ArgumentParser(description="Market sentiment analysis", epilog="BigML, Inc")

    # source with activity data
    parser.add_argument("--data", action="store", dest="data", default="data", help="Full path to data with csv files")

    # create private links or not
    parser.add_argument("--share", action="store_true", default=True, help="Share created resources or not")

    args = parser.parse_args(args)

    if not args.data:
        sys.exit("You need to provide a valid path to a data directory")

    api = BigML()

    name = "UpOrDown?"

    log("Creating sources...")
    csvs = glob.glob(os.path.join(args.data, "*.csv"))
    sources = []
    for csv in csvs:
        source = api.create_source(csv)
        api.ok(source)
        sources.append(source)

    log("Creating datasets...")
    datasets = []
    for source in sources:
        dataset = api.create_dataset(source)
        api.ok(dataset)
        datasets.append(dataset)

    new_datasets = []
    for dataset in datasets:
        new_dataset = api.create_dataset(dataset, {"new_fields": new_fields(), "all_fields": False})
        new_datasets.append(new_dataset)

    log("Merging datasets...")
    multi_dataset = api.create_dataset(new_datasets, {"name": name})
    api.ok(multi_dataset)

    # Create training and test set for evaluation
    log("Splitting dataset...")
    training, test = training_test_split(api, multi_dataset)

    log("Creating a model using the training dataset...")
    model = api.create_model(training, {"name": name + " (80%)"})
    api.ok(model)

    # Creating an evaluation
    log("Evaluating model against the test dataset...")
    eval_args = {"name": name + " - Single model: 80% vs 20%"}
    evaluation_model = api.create_evaluation(model, test, eval_args)
    api.ok(evaluation_model)

    log("Creating an ensemble using the training dataset...")
    ensemble = api.create_ensemble(training, {"name": name})
    api.ok(ensemble)

    # Creating an evaluation
    log("Evaluating ensemble against the test dataset...")
    eval_args = {"name": name + " - Ensemble: 80% vs 20%"}
    evaluation_ensemble = api.create_evaluation(ensemble, test, eval_args)
    api.ok(evaluation_ensemble)

    log("Creating model for the full dataset...")
    model = api.create_model(multi_dataset, {"name": name})
    api.ok(model)

    # Create private links
    if args.share:
        log("Sharing resources...")
        dataset_link = share_resource(api, multi_dataset)
        model_link = share_resource(api, model)
        evaluation_model_link = share_resource(api, evaluation_model)
        evaluation_ensemble_link = share_resource(api, evaluation_ensemble)
        log(dataset_link)
        log(model_link)
        log(evaluation_model_link)
        log(evaluation_ensemble_link)
开发者ID:jaor,项目名称:upordown,代码行数:86,代码来源:upordown.py


注:本文中的bigml.api.BigML.create_model方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。