当前位置: 首页>>代码示例>>Python>>正文


Python BigML.create_batch_prediction方法代码示例

本文整理汇总了Python中bigml.api.BigML.create_batch_prediction方法的典型用法代码示例。如果您正苦于以下问题:Python BigML.create_batch_prediction方法的具体用法?Python BigML.create_batch_prediction怎么用?Python BigML.create_batch_prediction使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在bigml.api.BigML的用法示例。


在下文中一共展示了BigML.create_batch_prediction方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: bigml

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_batch_prediction [as 别名]
def bigml( train_csv, test_csv, result_csv ):

    api = BigML(dev_mode=True)

    # train model
    start_training = timer()

    source_train = api.create_source(train_csv)
    dataset_train = api.create_dataset(source_train)
    model = api.create_model(dataset_train)

    end_training = timer()
    print('Training model.')
    print('Training took %i Seconds.' % (end_training - start_training) ); 

    # test create_model
    start_test = timer()

    source_test = api.create_source(test_csv)
    dataset_test = api.create_dataset(source_test)

    batch_prediction = api.create_batch_prediction(
        model, 
        dataset_test,
        {
            "name": "census prediction", 
            "all_fields": True,
            "header": False,
            "confidence": False
        }
    )

    # wait until batch processing is finished
    while api.get_batch_prediction(batch_prediction)['object']['status']['progress'] != 1:
        print api.get_batch_prediction(batch_prediction)['object']['status']['progress']
        time.sleep(1)

    end_test = timer()
    print('Testing took %i Seconds' % (end_test - start_test) ); 

    api.download_batch_prediction(batch_prediction['resource'], filename=result_csv)

    # cleanup
    api.delete_source(source_train)
    api.delete_source(source_test)
    api.delete_dataset(dataset_train)
    api.delete_dataset(dataset_test)
    api.delete_model(model)
开发者ID:marcharding,项目名称:ml-saas-comparison,代码行数:50,代码来源:saas_bigml.py

示例2: BigML

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_batch_prediction [as 别名]
from bigml.api import BigML

api = BigML()

source1 = api.create_source("iris.csv")
api.ok(source1)

dataset1 = api.create_dataset(source1)
api.ok(dataset1)

model1 = api.create_model(dataset1)
api.ok(model1)

batchprediction1 = api.create_batch_prediction(model1, dataset1, {"name": u"my_batch_prediction_name"})
api.ok(batchprediction1)
开发者ID:Pkuzhali,项目名称:bigmler,代码行数:17,代码来源:reify_batch_prediction.py

示例3: BigML

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_batch_prediction [as 别名]
from bigml.api import BigML
api = BigML()

source1 = api.create_source("iris.csv")
api.ok(source1)

dataset1 = api.create_dataset(source1, \
    {'name': u'iris'})
api.ok(dataset1)

model1 = api.create_model(dataset1, \
    {'name': u'iris'})
api.ok(model1)

batchprediction1 = api.create_batch_prediction(model1, dataset1, \
    {'name': u'my_batch_prediction_name'})
api.ok(batchprediction1)
开发者ID:mmerce,项目名称:bigmler,代码行数:19,代码来源:reify_batch_prediction.py

示例4:

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_batch_prediction [as 别名]
 source1_file = "iris.csv"
 args = \
     {u'fields': {u'000000': {u'name': u'sepal length', u'optype': u'numeric'},
                  u'000001': {u'name': u'sepal width', u'optype': u'numeric'},
                  u'000002': {u'name': u'petal length', u'optype': u'numeric'},
                  u'000003': {u'name': u'petal width', u'optype': u'numeric'},
                  u'000004': {u'name': u'species',
                              u'optype': u'categorical',
                              u'term_analysis': {u'enabled': True}}}}
 source2 = api.create_source(source1_file, args)
 api.ok(source2)
 
 args = \
     {u'objective_field': {u'id': u'000004'}}
 dataset1 = api.create_dataset(source2, args)
 api.ok(dataset1)
 
 args = \
     {u'split_candidates': 32}
 model1 = api.create_model(dataset1, args)
 api.ok(model1)
 
 args = \
     {u'fields_map': {u'000001': u'000001',
                      u'000002': u'000002',
                      u'000003': u'000003',
                      u'000004': u'000004'},
      u'operating_kind': u'probability'}
 batchprediction1 = api.create_batch_prediction(model1, dataset1, args)
 api.ok(batchprediction1)
 
开发者ID:shantanusharma,项目名称:bigmler,代码行数:32,代码来源:reify_batch_prediction.py

示例5: BigML

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_batch_prediction [as 别名]
from bigml.api import BigML
api = BigML()

source1 = api.create_source("iris.csv")
api.ok(source1)

dataset1 = api.create_dataset(source1, \
    {'name': u'iris'})
api.ok(dataset1)

model1 = api.create_model(dataset1, \
    {'name': u'iris'})
api.ok(model1)

batchprediction1 = api.create_batch_prediction(model1, dataset1, \
    {'name': u'iris dataset with iris', 'output_dataset': True})
api.ok(batchprediction1)

dataset2 = api.get_dataset(batchprediction1['object']['output_dataset_resource'])
api.ok(dataset2)

dataset2 = api.update_dataset(dataset2, \
    {'name': u'my_dataset_from_batch_prediction_name'})
api.ok(dataset2)
开发者ID:mmerce,项目名称:bigmler,代码行数:26,代码来源:reify_batch_prediction_dataset.py

示例6: BigML

# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_batch_prediction [as 别名]
from bigml.api import BigML
api = BigML()

source1 = api.create_source("iris.csv")
api.ok(source1)

dataset1 = api.create_dataset(source1)
api.ok(dataset1)

model1 = api.create_model(dataset1)
api.ok(model1)

batchprediction1 = api.create_batch_prediction(model1, dataset1, \
    {'output_dataset': True})
api.ok(batchprediction1)

dataset2 = api.get_dataset(batchprediction1['object']['output_dataset_resource'])
api.ok(dataset2)

dataset2 = api.update_dataset(dataset2, \
    {'fields': {u'000000': {'name': u'species'}},
     'name': u'my_dataset_from_batch_prediction_name'})
api.ok(dataset2)
开发者ID:Pkuzhali,项目名称:bigmler,代码行数:25,代码来源:reify_batch_prediction_dataset.py


注:本文中的bigml.api.BigML.create_batch_prediction方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。