本文整理汇总了Python中bigml.api.BigML.create_ensemble方法的典型用法代码示例。如果您正苦于以下问题:Python BigML.create_ensemble方法的具体用法?Python BigML.create_ensemble怎么用?Python BigML.create_ensemble使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bigml.api.BigML
的用法示例。
在下文中一共展示了BigML.create_ensemble方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_ensemble [as 别名]
api = BigML()
# <codecell>
# Create source instance with train dataset
train_source = api.create_source('train.csv')
# <codecell>
# Create a BigML dataset from source instance
train_dataset = api.create_dataset(train_source)
# <codecell>
# Fit a model to the dataset
model = api.create_ensemble(train_dataset)
# <codecell>
# Read the test dataset
test_X = pd.read_csv('test.csv')
test_y = pd.read_csv('test_target.csv')
test_set = test_X.T.to_dict().values()
# <codecell>
# Holds predictions from all the samples in test set
prediction = []
for x in test_set:
# Get predictions for complete test set
示例2: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_ensemble [as 别名]
from bigml.api import BigML
api = BigML()
source1 = api.create_source("iris.csv")
api.ok(source1)
dataset1 = api.create_dataset(source1, \
{'name': u'iris dataset'})
api.ok(dataset1)
ensemble1 = api.create_ensemble(dataset1, \
{'name': u'my_ensemble_name'})
api.ok(ensemble1)
示例3: BigMLTester
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_ensemble [as 别名]
class BigMLTester(ForestTester):
api = None
authenticated = False
source_res = None
ensemble_res = None
logger = None
train_time = -1
predict_time = -1
results = None
test_data = None
def __init__(self,*args,**kwargs):
print args
print kwargs
bigml_user = kwargs.get('bigml_user',None)
bigml_key = kwargs.get('bigml_key',None)
ForestTester.__init__(self,*args,**kwargs)
self.authenticate(bigml_user,bigml_key)
self.logger = logging.getLogger(__name__)
self.logger.addHandler(logging.FileHandler('BigMLTester.log'))
self.logger.setLevel(logging.DEBUG)
def authenticate(self,bigml_user,bigml_key):
"""
initialize the BigML API, do a short test to check authentication
"""
self.api = BigML(username=bigml_user,api_key=bigml_key)
result = self.api.list_sources()
if result['code'] == 200:
self.authenticated = True
else:
self.authenticated = False
def upload_source(self,filename):
"""
Upload a sourcefile to BigML. Return resource value.
"""
assert self.authenticated, 'Not authenticated!'
# check if source file has already been uploaded
query_string = 'name={}'.format(filename)
matching_sources = self.api.list_sources(query_string)['objects']
if len(matching_sources) > 0:
source = matching_sources[0]
self.logger.info('{0} is already present in BigML'.format(basename(filename)))
else:
self.logger.info('uploading source to BigML...')
source = self.api.create_source(filename,{'name':filename})
# enter polling loop until source becomes ready
check_resource(source['resource'],self.api.get_source)
return source['resource']
def make_dataset(self,source_res):
"""
Create a BigML dataset from the given source resource. Returns dataset
resource value.
"""
assert self.authenticated, 'Not authenticated!'
# check if dataset has already been created
query_string = 'source={}'.format(source_res)
matching_datasets = self.api.list_datasets(query_string)['objects']
if len(matching_datasets) > 0:
dataset = matching_datasets[0]
self.logger.info('A dataset already exits for this source')
else:
filename = self.api.get_source(source_res)['object']['file_name']
datasetname = "{0}'s dataset".format(filename)
dataset = self.api.create_dataset(source_res,{'name':datasetname})
# enter polling loop until dataset becomes ready
check_resource(dataset['resource'],self.api.get_dataset)
return dataset['resource']
def train_ensemble(self,train_data):
assert self.authenticated, 'Not authenticated!'
ensemble_args = {'number_of_models':self.n_trees,
'sample_rate':self.sample_rate,
'randomize':self.randomize,
'replacement':self.bootstrap,
'tlp':5}
ensemble = self.api.create_ensemble(train_data,ensemble_args)
self.ensemble_res = ensemble['resource']
# enter polling loop until ensemble becomes ready
ensemble = check_resource(self.ensemble_res,self.api.get_ensemble)
self.logger.info('Ensemble is ready')
self.train_time = ensemble['object']['status']['elapsed']/1000
def test_ensemble(self,test_file):
assert self.authenticated, 'Not authenticated!'
# download a local copy of the ensemble
self.logger.info('Creating local ensemble')
#.........这里部分代码省略.........
示例4: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_ensemble [as 别名]
from bigml.api import BigML
api = BigML()
source1_file = "iris.csv"
args = \
{u'fields': {u'000000': {u'name': u'sepal length', u'optype': u'numeric'},
u'000001': {u'name': u'sepal width', u'optype': u'numeric'},
u'000002': {u'name': u'petal length', u'optype': u'numeric'},
u'000003': {u'name': u'petal width', u'optype': u'numeric'},
u'000004': {u'name': u'species',
u'optype': u'categorical',
u'term_analysis': {u'enabled': True}}},
}
source2 = api.create_source(source1_file, args)
api.ok(source2)
args = \
{u'objective_field': {u'id': u'000004'},
}
dataset1 = api.create_dataset(source2, args)
api.ok(dataset1)
args = \
{u'ensemble_sample': {u'rate': 1, u'replacement': True, u'seed': u'bigml'},
u'seed': u'BigML',
u'stat_pruning': False}
ensemble1 = api.create_ensemble(dataset1, args)
api.ok(ensemble1)
示例5: main
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_ensemble [as 别名]
def main(args=sys.argv[1:]):
"""Parses command-line parameters and calls the actual main function.
"""
parser = argparse.ArgumentParser(description="Market sentiment analysis", epilog="BigML, Inc")
# source with activity data
parser.add_argument("--data", action="store", dest="data", default="data", help="Full path to data with csv files")
# create private links or not
parser.add_argument("--share", action="store_true", default=True, help="Share created resources or not")
args = parser.parse_args(args)
if not args.data:
sys.exit("You need to provide a valid path to a data directory")
api = BigML()
name = "UpOrDown?"
log("Creating sources...")
csvs = glob.glob(os.path.join(args.data, "*.csv"))
sources = []
for csv in csvs:
source = api.create_source(csv)
api.ok(source)
sources.append(source)
log("Creating datasets...")
datasets = []
for source in sources:
dataset = api.create_dataset(source)
api.ok(dataset)
datasets.append(dataset)
new_datasets = []
for dataset in datasets:
new_dataset = api.create_dataset(dataset, {"new_fields": new_fields(), "all_fields": False})
new_datasets.append(new_dataset)
log("Merging datasets...")
multi_dataset = api.create_dataset(new_datasets, {"name": name})
api.ok(multi_dataset)
# Create training and test set for evaluation
log("Splitting dataset...")
training, test = training_test_split(api, multi_dataset)
log("Creating a model using the training dataset...")
model = api.create_model(training, {"name": name + " (80%)"})
api.ok(model)
# Creating an evaluation
log("Evaluating model against the test dataset...")
eval_args = {"name": name + " - Single model: 80% vs 20%"}
evaluation_model = api.create_evaluation(model, test, eval_args)
api.ok(evaluation_model)
log("Creating an ensemble using the training dataset...")
ensemble = api.create_ensemble(training, {"name": name})
api.ok(ensemble)
# Creating an evaluation
log("Evaluating ensemble against the test dataset...")
eval_args = {"name": name + " - Ensemble: 80% vs 20%"}
evaluation_ensemble = api.create_evaluation(ensemble, test, eval_args)
api.ok(evaluation_ensemble)
log("Creating model for the full dataset...")
model = api.create_model(multi_dataset, {"name": name})
api.ok(model)
# Create private links
if args.share:
log("Sharing resources...")
dataset_link = share_resource(api, multi_dataset)
model_link = share_resource(api, model)
evaluation_model_link = share_resource(api, evaluation_model)
evaluation_ensemble_link = share_resource(api, evaluation_ensemble)
log(dataset_link)
log(model_link)
log(evaluation_model_link)
log(evaluation_ensemble_link)
示例6: BigML
# 需要导入模块: from bigml.api import BigML [as 别名]
# 或者: from bigml.api.BigML import create_ensemble [as 别名]
from bigml.api import BigML
api = BigML()
source1 = api.create_source("iris.csv")
api.ok(source1)
dataset1 = api.create_dataset(source1, {"name": u"iris dataset"})
api.ok(dataset1)
ensemble1 = api.create_ensemble(dataset1, {"name": u"my_ensemble_name", "seed": u"BigML"})
api.ok(ensemble1)