当前位置: 首页>>代码示例>>Python>>正文


Python Population.get_fittest方法代码示例

本文整理汇总了Python中Population.Population.get_fittest方法的典型用法代码示例。如果您正苦于以下问题:Python Population.get_fittest方法的具体用法?Python Population.get_fittest怎么用?Python Population.get_fittest使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Population.Population的用法示例。


在下文中一共展示了Population.get_fittest方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from Population import Population [as 别名]
# 或者: from Population.Population import get_fittest [as 别名]
def main():

    #Get the sequence to be searched using
    FitnessCalculator.set_solution(str(raw_input("SEQUENCE: ")))

    #Define the population
    pop_size = int(raw_input("Enter population size: "))
    elite_option = str(raw_input("Elitism enabled?(y/n): "))

    #Elite switch
    if elite_option == 'y':
        elitism_enabled = True
    else:
        elitism_enabled = False

    #Create a starting popultation
    population = Population(pop_size, True)

    #Generation count
    generation = 0
    evolution = Evolution(elitism_enabled)

    #Loop until we dont have a solution
    while population.get_fittest().get_fitness() < FitnessCalculator.get_max_fitness():
        generation += 1
        print "GENERATION : " + str(generation) + " FITTEST: " + str(population.get_fittest().get_fitness())
        #Evolve the population
        population = evolution.evolve(population)


    print "SOLUTION FOUND..."
    print "GENERATION: " + str(generation)
    print "GENES: " + population.get_fittest().get_string()

    return
开发者ID:omkarkarande,项目名称:SimpleGeneticAlgo,代码行数:37,代码来源:gen.py

示例2: tournament_selection

# 需要导入模块: from Population import Population [as 别名]
# 或者: from Population.Population import get_fittest [as 别名]
    def tournament_selection(self, population):
        # Create a new tournament population
        tournament_population = Population(self.tournament_size, False)

        for i in range(0, self.tournament_size):
            # Select a random individual from the pool for breeding qualification
            index = random.randint(0, population.get_size() - 1)
            tournament_population.save_individual(i, population.get_individual(index))

        # Return the fittest individual from the tournament for breeding
        return tournament_population.get_fittest()
开发者ID:omkarkarande,项目名称:SimpleGeneticAlgo,代码行数:13,代码来源:Evolution.py

示例3: tournament_selection

# 需要导入模块: from Population import Population [as 别名]
# 或者: from Population.Population import get_fittest [as 别名]
	def tournament_selection(population_passed):
		#Tournament pool
		tournament = Population(Algorithm.Tournament_size, False)

		""" Tournament selection technique.
		   How it works: The algorithm choose randomly five
		   individuals from the population and returns the fittest one """
		for i in range(Algorithm.Tournament_size):
			random_id = int(random() * population_passed.size())
			tournament.individuals.append(population_passed.get_individual(random_id))

		fittest = tournament.get_fittest()
		return fittest
开发者ID:4sp1r3,项目名称:detect-indent,代码行数:15,代码来源:10697974-Algorithm-tabs.py

示例4: time

# 需要导入模块: from Population import Population [as 别名]
# 或者: from Population.Population import get_fittest [as 别名]
from FitnessCalc import FitnessCalc
from Population import Population
from Algorithm import Algorithm
#from time import time

start = time()

FitnessCalc.set_solution("1111000000000000000000000000000000000000000000000000000000001111")

my_pop = Population(50, True)

generation_count = 0

while my_pop.fitness_of_the_fittest() != FitnessCalc.get_max_fitness():
        generation_count += 1
        print("Generation : %s Fittest : %s " % (generation_count, my_pop.fitness_of_the_fittest()))
        my_pop = Algorithm.evolve_population(my_pop)
        print("******************************************************")

genes_the_fittest = []
for i in range(len(FitnessCalc.Solution)):
    genes_the_fittest.append(my_pop.get_fittest().genes[i])

print("Solution found !\nGeneration : %s Fittest : %s " % (generation_count + 1, my_pop.fitness_of_the_fittest()))
print("Genes of the Fittest : %s " % (genes_the_fittest))


finish = time()
print ("Time elapsed : %s " % (finish - start))
开发者ID:purvanshi,项目名称:Data-Structures-and-algorithms,代码行数:31,代码来源:genetic.py


注:本文中的Population.Population.get_fittest方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。