本文整理汇总了Python中Population.Population.fitness_of_the_fittest方法的典型用法代码示例。如果您正苦于以下问题:Python Population.fitness_of_the_fittest方法的具体用法?Python Population.fitness_of_the_fittest怎么用?Python Population.fitness_of_the_fittest使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Population.Population
的用法示例。
在下文中一共展示了Population.fitness_of_the_fittest方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: time
# 需要导入模块: from Population import Population [as 别名]
# 或者: from Population.Population import fitness_of_the_fittest [as 别名]
fpl.getplayerdata()
# Time the algorithm
start = time()
# Set solution value higher than highest possible score.
# Look for the best possible answer
FitnessCalc.set_solution(1000)
# Create the initial random population
my_pop = Population(10000, True)
# Loop until number of generations is complete
generation_count = 0
while my_pop.fitness_of_the_fittest() < FitnessCalc.get_max_fitness():
generation_count += 1
# Output the best solution every 100 generations
if generation_count % 100 == 0:
print("Outputting Current Status")
my_pop.OutputFittest()
# Quit after a set number of generations
if generation_count == 500:
break
# Output current generation data and produce next generation
print("Average Fitness : %s" % my_pop.get_average_fitness())
print("Generation : %s Fittest : %s " % (generation_count, my_pop.fitness_of_the_fittest()))
my_pop = Algorithm.evolve_population(my_pop)
示例2: time
# 需要导入模块: from Population import Population [as 别名]
# 或者: from Population.Population import fitness_of_the_fittest [as 别名]
from FitnessCalc import FitnessCalc
from Population import Population
from Algorithm import Algorithm
#from time import time
start = time()
FitnessCalc.set_solution("1111000000000000000000000000000000000000000000000000000000001111")
my_pop = Population(50, True)
generation_count = 0
while my_pop.fitness_of_the_fittest() != FitnessCalc.get_max_fitness():
generation_count += 1
print("Generation : %s Fittest : %s " % (generation_count, my_pop.fitness_of_the_fittest()))
my_pop = Algorithm.evolve_population(my_pop)
print("******************************************************")
genes_the_fittest = []
for i in range(len(FitnessCalc.Solution)):
genes_the_fittest.append(my_pop.get_fittest().genes[i])
print("Solution found !\nGeneration : %s Fittest : %s " % (generation_count + 1, my_pop.fitness_of_the_fittest()))
print("Genes of the Fittest : %s " % (genes_the_fittest))
finish = time()
print ("Time elapsed : %s " % (finish - start))