当前位置: 首页>>代码示例>>Python>>正文


Python Population.fitness_of_the_fittest方法代码示例

本文整理汇总了Python中Population.Population.fitness_of_the_fittest方法的典型用法代码示例。如果您正苦于以下问题:Python Population.fitness_of_the_fittest方法的具体用法?Python Population.fitness_of_the_fittest怎么用?Python Population.fitness_of_the_fittest使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Population.Population的用法示例。


在下文中一共展示了Population.fitness_of_the_fittest方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: time

# 需要导入模块: from Population import Population [as 别名]
# 或者: from Population.Population import fitness_of_the_fittest [as 别名]
fpl.getplayerdata()

# Time the algorithm

start = time()

# Set solution value higher than highest possible score.
# Look for the best possible answer
FitnessCalc.set_solution(1000)

# Create the initial random population
my_pop = Population(10000, True)

# Loop until number of generations is complete
generation_count = 0
while my_pop.fitness_of_the_fittest() < FitnessCalc.get_max_fitness():
    generation_count += 1

    # Output the best solution every 100 generations
    if generation_count % 100 == 0:
        print("Outputting Current Status")
        my_pop.OutputFittest()

    # Quit after a set number of generations
    if generation_count == 500:
        break

    # Output current generation data and produce next generation
    print("Average Fitness : %s" % my_pop.get_average_fitness())
    print("Generation : %s Fittest : %s " % (generation_count, my_pop.fitness_of_the_fittest()))
    my_pop = Algorithm.evolve_population(my_pop)
开发者ID:ssonal,项目名称:Fantasy-Premier-League,代码行数:33,代码来源:GA.py

示例2: time

# 需要导入模块: from Population import Population [as 别名]
# 或者: from Population.Population import fitness_of_the_fittest [as 别名]
from FitnessCalc import FitnessCalc
from Population import Population
from Algorithm import Algorithm
#from time import time

start = time()

FitnessCalc.set_solution("1111000000000000000000000000000000000000000000000000000000001111")

my_pop = Population(50, True)

generation_count = 0

while my_pop.fitness_of_the_fittest() != FitnessCalc.get_max_fitness():
        generation_count += 1
        print("Generation : %s Fittest : %s " % (generation_count, my_pop.fitness_of_the_fittest()))
        my_pop = Algorithm.evolve_population(my_pop)
        print("******************************************************")

genes_the_fittest = []
for i in range(len(FitnessCalc.Solution)):
    genes_the_fittest.append(my_pop.get_fittest().genes[i])

print("Solution found !\nGeneration : %s Fittest : %s " % (generation_count + 1, my_pop.fitness_of_the_fittest()))
print("Genes of the Fittest : %s " % (genes_the_fittest))


finish = time()
print ("Time elapsed : %s " % (finish - start))
开发者ID:purvanshi,项目名称:Data-Structures-and-algorithms,代码行数:31,代码来源:genetic.py


注:本文中的Population.Population.fitness_of_the_fittest方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。