当前位置: 首页>>代码示例>>Python>>正文


Python Population.Population类代码示例

本文整理汇总了Python中Population.Population的典型用法代码示例。如果您正苦于以下问题:Python Population类的具体用法?Python Population怎么用?Python Population使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了Population类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

def main():

    #Get the sequence to be searched using
    FitnessCalculator.set_solution(str(raw_input("SEQUENCE: ")))

    #Define the population
    pop_size = int(raw_input("Enter population size: "))
    elite_option = str(raw_input("Elitism enabled?(y/n): "))

    #Elite switch
    if elite_option == 'y':
        elitism_enabled = True
    else:
        elitism_enabled = False

    #Create a starting popultation
    population = Population(pop_size, True)

    #Generation count
    generation = 0
    evolution = Evolution(elitism_enabled)

    #Loop until we dont have a solution
    while population.get_fittest().get_fitness() < FitnessCalculator.get_max_fitness():
        generation += 1
        print "GENERATION : " + str(generation) + " FITTEST: " + str(population.get_fittest().get_fitness())
        #Evolve the population
        population = evolution.evolve(population)


    print "SOLUTION FOUND..."
    print "GENERATION: " + str(generation)
    print "GENES: " + population.get_fittest().get_string()

    return
开发者ID:omkarkarande,项目名称:SimpleGeneticAlgo,代码行数:35,代码来源:gen.py

示例2: loadCoords

    def loadCoords(self,f=None):
        """loads Coords, creates the corresponding UI elements
            and the circles for plotting
        """

        default_cluster = self.d.default_cluster
        self.reset_sample_list()

        if f is None:
            f = tkFileDialog.askopenfile(mode='r',initialfile="coords.txt")
	    print f
	else:
	    f = open( f )

        for i,line in enumerate(f):
            p = Population()
            p.load_line(line)
            self.d.add_pop(p)

            sUI = SampleUIWPop(pop=p, master=self.sample_frame, 
                               config = self.c, data=self.d,
                               cluster=default_cluster)
            sUI.grid(column=0,row=i, sticky="ew")

            #create plotting circles and register events
            self.canvas['H'].panel.add_artist( sUI.circH )
            self.canvas['Psi'].panel.add_artist( sUI.circP )
            sUI.circH.connect()
            sUI.circP.connect()
            
            self.add_sample( sUI )

        self.nCoords = len( self.d.sList )
        self.activeCanvas.redraw()
开发者ID:BenjaminPeter,项目名称:pooGUI,代码行数:34,代码来源:gui.py

示例3: main

    def main(self):
        herd = Population(30)
        selection = SelectionStrategies()
        recombination = RecombinationStrategies()
        reinsertion = ReinsertionStrategies()
        herd.main()
        generations = 100
        # Display the first generation
        print "Generation 1"
        # for individual in range(1, len(herd.population)):
        #     print '--> ' .join(herd.population[individual]),
        #     print ' = ',herd.objective_values[individual], 'km'

        x = herd.objective_values
        population = herd.population
        for count in range(generations):
            population,x = selection.sort_by_fitness(population,x)
            parent1, parent2 = selection.tournament(population, x)

            child1,child2 = recombination.crossover(parent1, parent2)

            fitness_of_child1 = herd.get_total_distance(child1, herd.city_names, herd.routes)
            fitness_of_child2 = herd.get_total_distance(child2, herd.city_names, herd.routes)
            population,x = reinsertion.tournament(child1, child2, population, x, fitness_of_child1, fitness_of_child2)



            print "Generation ",count +2
            for individual in range(len(herd.population)):
                # print '--> ' .join(population[individual]),
                # print ' = ',x[individual], 'km'
                print ' ',x[individual],
            print 
开发者ID:wjacobus,项目名称:GeneticAlgorithm,代码行数:33,代码来源:BreedingPool.py

示例4: evolve_population

    def evolve_population(population_passed):
        print("Evolving population...")

        new_population = Population(population_passed.size(), False)

        # If Elitism is enabled then copy the best scoring individual to the next generation
        if Algorithm.Elitism:
            new_population.individuals.append(population_passed.get_fittest())
            elitism_off_set = 1
        else:
            elitism_off_set = 0
   
        #Do crossover over the entire population 
        for i in range(elitism_off_set, population_passed.size()):
            individual1 = Algorithm.tournament_selection(population_passed)
            individual2 = Algorithm.tournament_selection(population_passed)
            new_individual = Algorithm.crossover(individual1, individual2)
            new_population.individuals.append(new_individual)
   
        #Do mutation randomly
        for i in range(elitism_off_set, population_passed.size()):
            Algorithm.mutate(new_population.get_individual(i))

        #Repair any individuals broken by crossover or mutation
        for individual in new_population.individuals:
            individual.genes = fpl.repairteam(individual.genes)
                     
        for i in range(population_passed.size()):
            new_population.get_individual(i).reset_score()

        return new_population
开发者ID:ssonal,项目名称:Fantasy-Premier-League,代码行数:31,代码来源:Algorithm.py

示例5: make

    def make(self, population, newPopulationSize):
        """
        Process population.
        Winner of a single tournament is excluded from next ones.
        :param population:
        :param newPopulationSize:
        :return: list of selected Units
        """
        units = population.units[:]
        newUnits = []

        for i in range(self.elitismFactor):
            elite = population.bestUnit(i)
            newUnits.append(elite)
            #TODO: verify if this works
            units.remove(elite)
        while len(newUnits) < newPopulationSize and len(units):
            tournamentPopulation = Population()
            while tournamentPopulation.size < self.tournamentSize and len(units):
                unit = random.choice(units)
                tournamentPopulation.addUnitAndExpand(unit)
            selectedUnit = tournamentPopulation.bestUnit()
            units.remove(selectedUnit)
            newUnits.append(selectedUnit)
        return newUnits
开发者ID:akkenoth,项目名称:TSPGen,代码行数:25,代码来源:TournamentSelector.py

示例6: load_pop

def load_pop(file, wrapped_dict):
    if file == '/dev/null':
        pop = None
    else:
        pop = Population()
        pop.from_wrapped_dict(wrapped_dict)
    return pop
开发者ID:gigascience,项目名称:galaxy-genome-diversity,代码行数:7,代码来源:diversity_pi.py

示例7: __init__

    def __init__(self, label='Confirmed', **kwargs):
        '''Initialize a population of Known planets, from the NASA Exoplanet archive.'''

        # set up the population
        Population.__init__(self, label=label, **kwargs)
        correct(self)
        self.saveStandard()
        # defing some plotting parameters
        self.color = 'black'
        self.zorder = -1
开发者ID:zkbt,项目名称:exopop,代码行数:10,代码来源:Confirmed.py

示例8: __init__

    def __init__(self, label='KOI', **kwargs):
        '''Initialize a population of KOI's, from Exoplanet archive.'''

        # set up the population
        Population.__init__(self, label=label, **kwargs)
        correct(self)
        self.saveStandard()
        # defing some plotting parameters
        self.color = 'gray'
        self.zorder = -1
开发者ID:zkbt,项目名称:exopop,代码行数:10,代码来源:KOI.py

示例9: routineTo

def routineTo(sf, cf):
    gen = Genetic(sf, cf)
    fen = fenetre()
    food = Food(fen)
    #newFen = newFenTop()
    #texts = addScoreOnTopWindows(newFen, int(Params.p['sizePop']))
    pop = Population(fen, food)
    pop.setInitialPositions()
    for i in range(int(Params.p['nbEvol'])):
        popName = "pop_" + str(i)
        if i > 0:
            gen.createNewPopulation(pop)
            food = Food(fen)
            pop.setFood(food)
            pop.setInitialPositions()
        #newFen[1].itemconfig(newFen[2], text=popName)
        t = time.time()
        #while time.time() - t < Params.p['lifeTime']:
        j = 0
        while j < Params.p['lifeTime']:
            #refreshScores(newFen, texts, pop)
            pop.routineForPopulation()
            fen.refreshScreen()
            j += 1
        timeGen = time.time() - t
        print("Execution time: ", timeGen)
        savePop(pop, popName = popName)
    fen.fen.destroy()
开发者ID:thbeucher,项目名称:ANNGA,代码行数:28,代码来源:main.py

示例10: tournament_selection

    def tournament_selection(self, population):
        # Create a new tournament population
        tournament_population = Population(self.tournament_size, False)

        for i in range(0, self.tournament_size):
            # Select a random individual from the pool for breeding qualification
            index = random.randint(0, population.get_size() - 1)
            tournament_population.save_individual(i, population.get_individual(index))

        # Return the fittest individual from the tournament for breeding
        return tournament_population.get_fittest()
开发者ID:omkarkarande,项目名称:SimpleGeneticAlgo,代码行数:11,代码来源:Evolution.py

示例11: routine2

def routine2():
    for i in range(int(Params.p['nbEvol'])):
        popName = "pop_" + str(i)
        fen = fenetre()
        food = Food(fen)
        pop = Population(fen, food)
        t = time.time()
        while time.time() - t < Params.p['lifeTime']:
            pop.routineForPopulation()
            fen.refreshScreen()
        fen.fen.destroy()
        savePop(pop, popName = popName)
开发者ID:thbeucher,项目名称:ANNGA,代码行数:12,代码来源:main.py

示例12: tournament_selection

	def tournament_selection(population_passed):
		#Tournament pool
		tournament = Population(Algorithm.Tournament_size, False)

		""" Tournament selection technique.
		   How it works: The algorithm choose randomly five
		   individuals from the population and returns the fittest one """
		for i in range(Algorithm.Tournament_size):
			random_id = int(random() * population_passed.size())
			tournament.individuals.append(population_passed.get_individual(random_id))

		fittest = tournament.get_fittest()
		return fittest
开发者ID:4sp1r3,项目名称:detect-indent,代码行数:13,代码来源:10697974-Algorithm-tabs.py

示例13: routine

def routine():
    #create the windows
    fen = fenetre()
    #create the food
    food = Food(fen)
    #create the population
    pop = Population(fen, food)

    t = time.time()
    while time.time() - t < Params.p['lifeTime']:
        #time.sleep(0.01)
        pop.routineForPopulation()
        fen.refreshScreen()
    fen.fen.destroy()
    savePop(pop)
开发者ID:thbeucher,项目名称:ANNGA,代码行数:15,代码来源:main.py

示例14: pos_dict

def pos_dict(gd_indivs_file, input_type):
    rv = {}

    p = Population()
    p.from_population_file(gd_indivs_file)

    for tag in p.tag_list():
        column, name = tag.split(':')
        column = int(column) - 1

        if input_type == 'gd_genotype':
            column -= 2

        rv[name] = column

    return rv
开发者ID:gigascience,项目名称:galaxy-genome-diversity,代码行数:16,代码来源:make_phylip.py

示例15: __init__

 def __init__(self, simNum):
     self.simNum = simNum
     self.numTimePeriods = 100
     self.logInteractions = True
     self.popSize = 100 #Size of the population
     self.minFam = 2
     self.maxFam = 6
     self.igConnectLow = 2
     self.igConnectHigh = 5
     self.xConnects = round(.2 * self.popSize)
     self.intsPerTime = .2 # interactions as a proportion of the population per time period
     self.meanPosVal = 5 #Mean value of an interaction
     self.meanAvoidVal = 0 #Mean value of avoiding an interaction
     self.disRisk = .05 #Probability of being a disease carrier at the start of the simulation)
     self.immuneProb = .05 #Probability of being immune to disease at the start of the simulation
     self.newDisease = Disease()
     self.newPop = Population(self.popSize, self.disRisk, self.immuneProb, self.newDisease, self.xConnects, self.minFam, self.maxFam, self.igConnectLow, self.igConnectHigh)
     self.intLog = []
     self.totalInts = 0
     self.timeLog = []
     self.startTime = None
     self.endTime = None
     self.timePerInt = None
     self.runTime = None
     self.runVals = None
开发者ID:drRussClay,项目名称:AB_Simulation-BIS,代码行数:25,代码来源:Simulation.py


注:本文中的Population.Population类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。