本文整理汇总了Python中Graphics.format方法的典型用法代码示例。如果您正苦于以下问题:Python Graphics.format方法的具体用法?Python Graphics.format怎么用?Python Graphics.format使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Graphics
的用法示例。
在下文中一共展示了Graphics.format方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: ecdf
# 需要导入模块: import Graphics [as 别名]
# 或者: from Graphics import format [as 别名]
def ecdf(data, show=False,savename=None):
ecdf = sm.distributions.ECDF(data)
x = np.linspace(data.min(),data.max())
y = ecdf(x)
cutoff = x[y>0.85][0]
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(x,y,'k',linewidth=3)
artist.adjust_spines(ax)
ax.annotate(r'\Large \textbf{Cutoff:} $%.03f$'%cutoff, xy=(.3, .2), xycoords='axes fraction',
horizontalalignment='center', verticalalignment='center')
ax.set_xlabel(artist.format('Absolute Correlation'))
ax.set_ylabel(artist.format('Percentile'))
ax.axhline(y=0.85,color='r',linestyle='--',linewidth=2)
ax.axvline(x=cutoff,color='r',linestyle='--',linewidth=2)
ax.set_xlim((0,1))
plt.tight_layout()
if savename:
plt.savefig('%s.png'%savename,dpi=200)
if show:
plt.show()
return cutoff
示例2: snapshots
# 需要导入模块: import Graphics [as 别名]
# 或者: from Graphics import format [as 别名]
def snapshots(data, indices,basepath=None, data_label='data'):
indices = zip(indices,indices[1:])
for start_idx,stop_idx in indices:
initial_distribution = data[:,start_idx]
final_distribution = data[:,stop_idx]
fig = plt.figure()
ax = fig.add_subplot(111)
ax.hist(initial_distribution,color='r',alpha=0.5,bins=20,label='Initial', range=(-1,1))
ax.hist(final_distribution,color='k',alpha=0.5,bins=20,label='Final',range=(-1,1))
artist.adjust_spines(ax)
ax.set_xlabel(artist.format(data_label))
ax.set_ylabel(artist.format('Prevalence'))
H,p =kruskal(initial_distribution,final_distribution)
effect_size = np.linalg.norm(final_distribution-initial_distribution)
ax.annotate('\Large $d=%.02f, \; p=%.04f$'%(effect_size,p), xy=(.3, .9),
xycoords='axes fraction', horizontalalignment='right', verticalalignment='top')
plt.tight_layout()
plt.legend(frameon=False)
filename = os.path.join(basepath,'%s-compare-%d-%d.png'%(data_label,start_idx,stop_idx))
plt.savefig(filename,dpi=300)
plt.close()
示例3: plot_variable
# 需要导入模块: import Graphics [as 别名]
# 或者: from Graphics import format [as 别名]
def plot_variable(data,basepath=None,dataname='',criterion=None, criterionname=[]):
fig = plt.figure()
ax = fig.add_subplot(111)
x = range(data.shape[1])
ap('Plotting %s'%dataname)
if criterion != None:
if type(criterion) != list:
median, lq, uq = perc(data[criterion,:])
ax.plot(x,median,linewidth=2, color='#B22400')
ax.fill_between(x, lq, uq, alpha=0.25, linewidth=0, color='#B22400')
else:
bmap = brewer2mpl.get_map('Set2', 'qualitative', 7)
colors = bmap.mpl_colors
for i,(x_criterion,x_label) in enumerate(itertools.izip_longest(criterion,criterionname,fillvalue='Group')):
median, lq, uq = perc(data[x_criterion,:])
ax.plot(x,median,linewidth=2, color=colors[i], label=artist.format(x_label))
ax.fill_between(x, lq, uq, alpha=0.25, linewidth=0, color=colors[i])
median, lq, uq = perc(data)
ax.plot(x,median,linewidth=2, color='#B22400',label=artist.format('Full population'))
ax.fill_between(x, lq, uq, alpha=0.25, linewidth=0, color='#B22400')
artist.adjust_spines(ax)
ax.set_ylabel(artist.format(dataname))
ax.set_xlabel(artist.format('Time'))
ax.axvline(data.shape[1]/3,color='r',linewidth=2,linestyle='--')
ax.axvline(2*data.shape[1]/3,color='r',linewidth=2,linestyle='--')
plt.legend(frameon=False,loc='lower left')
plt.tight_layout()
plt.savefig(os.path.join(basepath,'%s.png'%dataname))
示例4: network_stability
# 需要导入模块: import Graphics [as 别名]
# 或者: from Graphics import format [as 别名]
def network_stability(energy_trace,savename):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(energy_trace,'k',linewidth=2)
artist.adjust_spines(ax)
ax.set_xlabel(artist.format('Time'))
ax.set_ylabel(artist.format('Stability (energy)'))
plt.savefig('%s.png'%savename,dpi=200)
plt.close()
示例5: memory_stability
# 需要导入模块: import Graphics [as 别名]
# 或者: from Graphics import format [as 别名]
def memory_stability(mat,savename):
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.imshow(mat,interpolation='nearest',aspect='auto')
artist.adjust_spines(ax)
ax.set_ylabel(artist.format('Memory'))
ax.set_xlabel(artist.format('Time'))
cbar = plt.colorbar(cax)
cbar.set_label(artist.format('Energy'))
plt.savefig('%s.png'%savename,dpi=200)
plt.close()
示例6: hist_compare
# 需要导入模块: import Graphics [as 别名]
# 或者: from Graphics import format [as 别名]
def hist_compare(data,criterion=None, basepath=None, criterionname='Target population',fieldname='Field'):
del fig,ax
fig = plt.figure()
ax = fig.add_subplot(111)
ax.hist(data,color='k',histtype='step',label=artist.format('Full Population'))
plt.hold(True)
if criterion:
ax.hist(data[criterion],color='r',histtype='stepfilled',label=artist.format(criterionname))
artist.adjust_spines(ax)
ax.set_xlabel(artist.format(fieldname))
ax.set_ylabel(artist.format('No. of people '))
plt.legend(frameon=False)
plt.tight_layout()
plt.savefig(os.path.join(basepath,'hist_compare_full_%s'%('_'.join(criterion.split()))),dpi=300)
示例7: population_summary
# 需要导入模块: import Graphics [as 别名]
# 或者: from Graphics import format [as 别名]
def population_summary(basepath=None, criterion = None, criterionname=''):
yvars = open(directory['variables'],READ).read().splitlines()
yvars.remove('past month drinking')
ncols = np.ceil(np.sqrt(len(yvars))).astype(int)
nrows = np.ceil(len(yvars)/ncols).astype(int)
MALE = 0.5
FEMALE = 0.3
fig,axs = plt.subplots(nrows=nrows,ncols=ncols,sharey=True)
for i,col in enumerate(axs):
for j,row in enumerate(col):
filename = 'initial-distribution-%s.txt'%(yvars[i*ncols+j].replace(' ','-'))
data = np.loadtxt(os.path.join(basepath,filename),delimiter=TAB)
if criterion:
weights = np.ones_like(data[criterion])/len(data[criterion])
_,_,patches1 = axs[i,j].hist(data[criterion],color='r',alpha=0.5,
label=artist.format(criterionname),histtype='step',weights=weights)
plt.hold(True)
weights = np.ones_like(data)/len(data)
_,_,patches2 = axs[i,j].hist(data, color='k',label=artist.format('Full population'),
histtype='stepfilled' if not criterion else 'step',weights=weights)
fig.canvas.mpl_connect('draw_event', artist.on_draw)
artist.adjust_spines(axs[i,j])
if 'attitude' not in yvars[i*ncols+j]:
axs[i,j].set_xlabel(artist.format(yvars[i*ncols+j].replace('drink','use')))
if 'gender' in yvars[i*ncols+j]:
axs[i,j].set_xticks([FEMALE,MALE])
axs[i,j].set_xticklabels(map(artist.format,['Female','Male']))
elif 'psychological' in yvars[i*ncols+j]:
label = '\n'.join(map(artist.format,['Attitude to','psychological','consequences']))
axs[i,j].set_xlabel(label)
elif 'medical' in yvars[i*ncols+j]:
label = '\n'.join(map(artist.format,['Attitude','to medical','consequences']))
axs[i,j].set_xlabel(label)
#axs[i,j].set_xlim([-50,50])
plt.tight_layout()
if criterion:
fig.legend((patches1[0], patches2[0]), (artist.format(criterionname),artist.format('Full population')),
loc='lower right', frameon=False, ncol=2)
filename = os.path.join(os.getcwd(),basepath,'dashboard.png' if criterionname == '' else 'dashboard-%-s.png'%criterionname)
plt.savefig(filename,dpi=300)
示例8: correlation_visualization
# 需要导入模块: import Graphics [as 别名]
# 或者: from Graphics import format [as 别名]
def correlation_visualization(data, show=False,savename=None):
correlations = ['Quu','Qru','Qvu']
#Analyze correlations
fig,axs = plt.subplots(nrows=3,ncols=1,sharex=True)
for ax,data,label in zip(axs,map(dq,[data[correlation] for correlation in correlations]),correlations):
ax.plot(data,'k',linewidth=2,label=artist.format(label))
artist.adjust_spines(ax)
ax.set_ylabel(r'\Large $\mathbf{\partial \left(\det %s_{%s}\right)}$'%(label[0],label[1:]),rotation='horizontal')
ax.set_xlabel(artist.format('Time'))
plt.tight_layout()
if savename:
plt.savefig('%s.png'%savename,dpi=200)
if show:
plt.show()
plt.close()
示例9: compare_demographics
# 需要导入模块: import Graphics [as 别名]
# 或者: from Graphics import format [as 别名]
def compare_demographics(data,nrows=2,ncols=3):
#Data is a list of tuples of (label,data,color)
fig,axs = plt.subplots(nrows=nrows,ncols=ncols,sharex=False,sharey=True)
first_label,first_idx,first_color = data[0]
second_label,second_idx,second_color = data[1]
MALE = 0.5
FEMALE = 0.3
for i,col in enumerate(axs):
for j,row in enumerate(col):
characteristic = characteristics[i*ncols+j]
uq = demographics[characteristic][first_idx]
lq = demographics[characteristic][second_idx]
_,_,patches1=row.hist(uq,color=first_color,label=artist.format(first_label), histtype='step',
weights = np.ones_like(uq)/len(uq))
plt.hold(True)
_,_,patches2=row.hist(lq,color=second_color,label=artist.format(second_label),histtype='step',
weights=np.ones_like(lq)/len(lq))
fig.canvas.mpl_connect('draw_event', artist.on_draw)
artist.adjust_spines(row)
if 'attitude' not in yvars[i*ncols+j]:
row.set_xlabel(artist.format(yvars[i*ncols+j]))
if 'gender' in yvars[i*ncols+j]:
axs[i,j].set_xticks([FEMALE,MALE])
axs[i,j].set_xticklabels(map(artist.format,['Female','Male']))
elif 'psychological' in yvars[i*ncols+j]:
label = '\n'.join(map(artist.format,['Attitude to','psychological','consequences']))
row.set_xlabel(label)
elif 'medical' in yvars[i*ncols+j]:
label = '\n'.join(map(artist.format,['Attitude','to medical','consequences']))
row.set_xlabel(label)
#axs[i,j].set_xlim([-50,50])
plt.tight_layout()
fig.legend((patches1[0], patches2[0]), (artist.format(first_label),artist.format(second_label)),
loc='lower right', frameon=False, ncol=2)
#filename = os.path.join(os.getcwd(),basepath,'compare-quartile-demographics-no-temporal-threshold.png')
filename = os.path.join(os.getcwd(),basepath,'compare-quartile-demographics-%s-vs-%s.png'%(first_label,second_label))
plt.savefig(filename,dpi=300)
del fig,axs,i,j
示例10: compare_distributions
# 需要导入模块: import Graphics [as 别名]
# 或者: from Graphics import format [as 别名]
def compare_distributions(variable_source_name,idxs,rng=(0,1)):
#Assume idxs is dictionary structured as {name:[corresponding indices]}
fig = plt.figure()
ax = fig.add_subplot(111)
data = np.loadtxt(make_filename('%s.txt'%(variable_source_name)),delimiter=TAB)
fig = plt.figure()
ax = fig.add_subplot(111)
plt.hold(True)
for subpopulation,idx,color in idxs:
weights = np.ones_like(data[idx])/len(data[idx])
ax.hist(data[idx],color=color,label=artist.format(subpopulation),histtype='step',range=rng,weights=weights)
fig.canvas.mpl_connect('draw_event', artist.on_draw)
artist.adjust_spines(ax)
ax.set_ylabel(artist.format('Prevalance'))
ax.set_xlabel(artist.format(variable_source_name))
plt.legend(frameon=False,ncol=2,loc='upper center',bbox_to_anchor=(.5,1.05))
plt.tight_layout()
plt.savefig(make_filename('%s-%s.png'%(variable_source_name,'-'.join([idx[0] for idx in idxs]))),dpi=300)
del fig,ax
示例11: plot_and_save
# 需要导入模块: import Graphics [as 别名]
# 或者: from Graphics import format [as 别名]
def plot_and_save(frequencies, words, ylabel, savefile):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.semilogy(frequencies,'k--',linewidth=3)
artist.adjust_spines(ax)
ax.set_xticks(xrange(len(words)))
ax.set_xticklabels([r'\textbf{\textsc{%s}'%word for word in words],rotation='vertical')
ax.set_ylabel(artist.format(ylabel))
plt.tight_layout()
plt.show()
plt.savefig(savefile, bbox_inches="tight")
示例12: accuracy_plot
# 需要导入模块: import Graphics [as 别名]
# 或者: from Graphics import format [as 别名]
def accuracy_plot(start,accuracy, stop, memory,idx=0,savename=''):
fig = plt.figure()
start_plot = plt.subplot2grid((1,5),(0,0))
accuracy_p = plt.subplot2grid((1,5),(0,1),colspan=2)
end_plot = plt.subplot2grid((1,5),(0,3))
target_plot = plt.subplot2grid((1,5),(0,4))
parameters = {'interpolation':'nearest','aspect':'auto', 'cmap':plt.cm.binary}
start_plot.imshow(start[:,np.newaxis],**parameters)
accuracy_p.plot(accuracy,'k',linewidth=2)
end_plot.imshow(stop[:,np.newaxis],**parameters)
target_plot.imshow(memory[:,np.newaxis],**parameters)
artist.adjust_spines(accuracy_p)
for ax in [start_plot,end_plot,target_plot]:
artist.adjust_spines(ax,['left'])
accuracy_p.annotate(r'\Large $q\left(t\right) = \frac{1}{N} \mathbf{v}\left(t\right)\cdot \mathbf{v_{target}}$',
xy=(.6, .2), xycoords='axes fraction',horizontalalignment='center', verticalalignment='center')
accuracy_p.set_ylim((-1,1))
start_plot.set_xticklabels([])
start_plot.set_xlabel(artist.format('Start'))
end_plot.set_xticklabels([])
end_plot.set_xlabel(artist.format('End'))
target_plot.set_xticklabels([])
target_plot.set_xlabel(artist.format('Target'))
fig.tight_layout()
if savename:
plt.savefig('%s-memory-%d.png'%(savename,idx),dpi=200)
plt.close()
示例13: time_series
# 需要导入模块: import Graphics [as 别名]
# 或者: from Graphics import format [as 别名]
def time_series(basepath=None, criterion=None, criterionname=''):
filename = os.path.join(basepath,'attitudes.txt')
attitudes = np.loadtxt(filename,delimiter=TAB)
fig = plt.figure()
ax = fig.add_subplot(111)
#ax.fill_between(xrange(attitudes.shape[1]), attitudes.mean(axis=0)-attitudes.std(axis=0),
# attitudes.mean(axis=0) + attitudes.std(axis=0), color='k', alpha=0.4,
# label=artist.format('Full population'))
ax.errorbar(xrange(attitudes.shape[1]),attitudes.mean(axis=0),yerr=(attitudes.std(axis=0)/attitudes.shape[0]))
# ax.plot(xrange(attitudes.shape[1]),attitudes.mean(axis=0),color='k',linewidth=2)
if criterion:
data = attitudes[criterion]
ax.fill_between(xrange(data.shape[1]), data.mean(axis=0)-data.std(axis=0),
data.mean(axis=0) + data.std(axis=0), color='r', alpha=0.4,
label=artist.format('criterionname'))
ax.plot(xrange(data.shape[1]),data.mean(axis=0),color='r',linewidth=2)
artist.adjust_spines(ax)
ax.axvline(attitudes.shape[1]/3.,color='r',linewidth=2,linestyle='--') #This is a hack
ax.axvline(2*attitudes.shape[1]/3.,color='r',linewidth=2,linestyle='--') #This is a hack
ax.set_ylabel(artist.format('Intent to drink'))
ax.set_xlabel(artist.format('Time'))
ax.set_ylim(ymin=0)
filename = os.path.join(os.getcwd(),basepath,'timecourse.png' if criterionname == '' else 'timecourse-%s.png'%criterionname)
plt.savefig(filename,dpi=300)
示例14: mvr_coefficients
# 需要导入模块: import Graphics [as 别名]
# 或者: from Graphics import format [as 别名]
def mvr_coefficients(model,labels,show=False,savename=None):
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.imshow(model.coef_.transpose(),interpolation='nearest',aspect='auto',
vmin=-0.5,vmax=0.5)
artist.adjust_spines(ax)
ax.set_yticks(range(len(labels)))
ax.set_yticklabels(map(artist.format,[name for name in labels if 'EVD' not in name]))
ax.set_xticks(range(3))
ax.set_xticklabels(map(artist.format,range(1,4)))
ax.set_xlabel(artist.format('Placement grade'))
plt.colorbar(cax)
plt.tight_layout()
if savename:
plt.savefig('%s.png'%savename,dpi=200)
if show:
plt.show()
示例15: show_drinking_behavior
# 需要导入模块: import Graphics [as 别名]
# 或者: from Graphics import format [as 别名]
def show_drinking_behavior(basepath=None,compare_distributions=True,
visualize_one_random_actor=False, visualize_all_actors=True):
agents = np.loadtxt(os.path.join(basepath,'responders'),delimiter=TAB)
filename = os.path.join(basepath,'drinking-behavior.txt')
drinking_behavior = np.loadtxt(filename,delimiter=TAB)
if compare_distributions:
fig = plt.figure()
ax = fig.add_subplot(111)
H,p = kruskal(drinking_behavior[:,INITIAL],drinking_behavior[:,END])
initial_distribution = drinking_behavior[:,INITIAL]
final_distribution = drinking_behavior[:,END]
low = min(initial_distribution.min(),final_distribution.min())
high = max(initial_distribution.max(),final_distribution.max())
ax.hist(initial_distribution,color='r',alpha=0.5,bins=20,label='Initial',range=(low,high))
ax.hist(final_distribution,color='k',alpha=0.5,bins=20,label='Final', range=(low,high))
artist.adjust_spines(ax)
ax.set_xlabel(artist.format('Intent to drink'))
ax.set_ylabel(artist.format('Prevalence'))
plt.legend(frameon=False)
filename = os.path.join(os.getcwd(),basepath,'drinking-behavior-compare-distributions.png')
plt.savefig(filename,dpi=300)
if visualize_one_random_actor:
fig = plt.figure()
ax = fig.add_subplot(111)
random_actor = random.choice(xrange(drinking_behavior.shape[0]))
ax.plot(drinking_behavior[random_actor,:],'k--',linewidth=2)
artist.adjust_spines(ax)
ax.set_ylabel(artist.format('Past drinking behavior'))
ax.set_xlabel(artist.format('Time'))
filename = os.path.join(os.getcwd(),basepath,'drinking-behavior-visualize-actor.png')
plt.savefig(filename,dpi=300)
if visualize_all_actors:
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.imshow(drinking_behavior,interpolation='nearest',aspect='auto')
artist.adjust_spines(ax)
ax.set_ylabel(artist.format('Actor'))
ax.set_xlabel(artist.format('Time'))
plt.colorbar(cax)
filename = os.path.join(os.getcwd(),basepath,'drinking-behavior-visualize-all-actors.png')
plt.savefig(filename,dpi=300)