当前位置: 首页>>代码示例>>C#>>正文


C# Network.PulseDetailed方法代码示例

本文整理汇总了C#中Network.PulseDetailed方法的典型用法代码示例。如果您正苦于以下问题:C# Network.PulseDetailed方法的具体用法?C# Network.PulseDetailed怎么用?C# Network.PulseDetailed使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Network的用法示例。


在下文中一共展示了Network.PulseDetailed方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Delta

 /// <summary>
 /// Calculates the "delta value" for a specified neuron.
 /// For output neurons, delta = (calculated - actual)*(calculated - calculated^2)
 /// For hidden neurons in level l, delta = (calculated - calculated^2)* (sum n in neurons in l+1 [ delta((l+1)[n]) * weight(l[n] -> (l+1)[n]) ])
 /// </summary>
 /// <param name="network">The network to calculate the delta on</param>
 /// <param name="set">The training set to calculate the delta on</param>
 /// <param name="innerLayer">The inner layer index to calculate the training set on</param>
 /// <param name="neuron">The neuron index to calculate the training set on</param>
 /// <param name="deltas">The delta values for the L+1 layer</param>
 /// <returns>The delta value for the specified neuron</returns>
 public static double Delta(Network network, TrainingSet set, int innerLayer, int neuron, double[] deltas = null)
 {
     var isOutputLayer = innerLayer == network.Layers.Length - 1;
     if (isOutputLayer)
     {
         var output = network.Pulse(set.Inputs)[neuron];
         return (output - set.Outputs[neuron]) * (output - Math.Pow(output, 2));
     }
     else
     {
         var outputs = network.PulseDetailed(set.Inputs, false);
         var actualOutput = outputs[innerLayer][neuron];
         var summation = 0.0;
         for (var n = 0; n < network.Weights[innerLayer + 1].Length; n++)
         {
             summation += deltas[n] * network.Weights[innerLayer + 1][n][neuron];
         }
         return (actualOutput - Math.Pow(actualOutput, 2)) * summation;
     }
 }
开发者ID:matthewsot,项目名称:zoltar,代码行数:31,代码来源:BackPropOptimizer.cs

示例2: Optimize

        /// <summary>
        /// Optimizes weights for a given training set
        /// </summary>
        /// <param name="network">The network to optimize</param>
        /// <param name="set">The set to optimize for</param>
        /// <param name="trainingFactor">The training factor (how large the changes should be)</param>
        /// <returns>The optimized weights</returns>
        public static double[][][] Optimize(Network network, TrainingSet set, double trainingFactor = 0.1)
        {
            var outputs = network.PulseDetailed(set.Inputs, true);
            var deltas = new double[network.Weights.Length][];
            for (var layer = network.Weights.Length - 1; layer >= 0; layer--)
            {
                deltas[layer] = new double[network.Weights[layer].Length];
                for (var neuron = 0; neuron < network.Weights[layer].Length; neuron++)
                {
                    if (layer == network.Weights.Length - 1)
                    {
                        deltas[layer][neuron] = Delta(network, set, layer, neuron);
                    }
                    else
                    {
                        deltas[layer][neuron] = Delta(network, set, layer, neuron, deltas[layer + 1]);
                    }

                    for (var input = 0; input < network.Weights[layer][neuron].Length; input++)
                    {
                        var delta = deltas[layer][neuron];

                        var errorPrime = 0.0;
                        if (input < outputs[layer].Length)
                        {
                            //No need for layer-1 since the addition of the inputs pushes all the layers +1
                            errorPrime = delta * outputs[layer/* - 1*/][input]; //Error prime = (d Error) / (d weight)
                        }
                        else
                        {
                            //Assume it's a bias neuron of value 1
                            errorPrime = delta * 1;
                        }

                        var deltaWeight = (-1.0) * trainingFactor * errorPrime;

                        var preError = network.Error(set, network.Weights);
                        var preErrorWeight = network.Weights[layer][neuron][input];

                        network.Weights[layer][neuron][input] += deltaWeight;

                        var postError = network.Error(set, network.Weights);
                        if (postError > preError)
                        {
                            network.Weights[layer][neuron][input] -= deltaWeight;
                        }
                    }
                }
            }
            return network.Weights;
        }
开发者ID:matthewsot,项目名称:zoltar,代码行数:58,代码来源:BackPropOptimizer.cs


注:本文中的Network.PulseDetailed方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。