当前位置: 首页>>代码示例>>C#>>正文


C# Network.Error方法代码示例

本文整理汇总了C#中Network.Error方法的典型用法代码示例。如果您正苦于以下问题:C# Network.Error方法的具体用法?C# Network.Error怎么用?C# Network.Error使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Network的用法示例。


在下文中一共展示了Network.Error方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Run

        public static void Run()
        {
            var trainingSets = GenerateTrainingSets(100);

            Network network;
            double error = 0;
            do
            {
                Console.WriteLine("Optimizing...");
                network = new Network(trainingSets[0].Inputs.Length, 2, 10, trainingSets[0].Outputs.Length);
                network.Weights = BruteOptimizer.OptimizeMulti(network, trainingSets);
                error = network.Error(trainingSets, network.Weights);
                Console.WriteLine("Error from last optimization attempt: " + error);
            } while (error > 3);

            Console.WriteLine("Optimization complete!");
            while (true)
            {
                Console.Write("Enter space-separated inputs: ");
                var inputs = Console.ReadLine().Split(' ');
                if (inputs.Length == 1)
                {
                    break;
                }
                var inputArray = new double[] { double.Parse(inputs[0].Trim()), double.Parse(inputs[1].Trim()) };
                Console.WriteLine(network.Pulse(inputArray)[0]);
            }
        }
开发者ID:matthewsot,项目名称:zoltar,代码行数:28,代码来源:SignMatch.cs

示例2: Run

        public static void Run()
        {
            var trainingSets = LoadTrainingSets();

            Network network = new Network(13, 1, 4, 3);
            network.AddBiasNeuron(0);
            double error = 0;
            double deltaDrop = 0;
            int tries = 0;
            do
            {
                //if (tries % 5 == 0 && deltaDrop < 0.5)
                //{
                //    Console.Write("Randomizing weights");
                //    network.RandomizeWeights();
                //}
                Console.WriteLine("Optimizing...");
                //network.Weights = BruteOptimizer.OptimizeMulti(network, trainingSets);
                network.Weights = BackPropOptimizer.Optimize(network, trainingSets, 2, 1);
                var newError = network.Error(trainingSets, network.Weights);
                deltaDrop = error - newError;
                error = newError;
                Console.WriteLine("Error from last optimization attempt: " + error);
                tries++;
            } while (error > 5 /*false || error > 10 || deltaDrop < 1*/);

            Console.WriteLine("Optimization complete!");
            while (true)
            {
                Console.Write("Enter comma-separated inputs: ");
                var inputs = Console.ReadLine().Split(',');
                if (inputs.Length == 1)
                {
                    break;
                }
                var inputArray = new double[13];
                for (var i = 0; i < 13; i++)
                {
                    var minVal = RawTrainingSets.Min(set => set.Inputs[i]);
                    var maxVal = RawTrainingSets.Max(set => set.Inputs[i]);
                    inputArray[i] = Normalize(double.Parse(inputs[i].Trim()), minVal, maxVal);
                }
                var output = network.Pulse(inputArray);
                Console.WriteLine(output[0] + " " + output[1] + " " + output[2]);
            }
        }
开发者ID:matthewsot,项目名称:zoltar,代码行数:46,代码来源:WineMatch.cs

示例3: Optimize

        /// <summary>
        /// Optimizes weights for a given training set
        /// </summary>
        /// <param name="network">The network to optimize</param>
        /// <param name="set">The set to optimize for</param>
        /// <param name="trainingFactor">The training factor (how large the changes should be)</param>
        /// <returns>The optimized weights</returns>
        public static double[][][] Optimize(Network network, TrainingSet set, double trainingFactor = 0.1)
        {
            var outputs = network.PulseDetailed(set.Inputs, true);
            var deltas = new double[network.Weights.Length][];
            for (var layer = network.Weights.Length - 1; layer >= 0; layer--)
            {
                deltas[layer] = new double[network.Weights[layer].Length];
                for (var neuron = 0; neuron < network.Weights[layer].Length; neuron++)
                {
                    if (layer == network.Weights.Length - 1)
                    {
                        deltas[layer][neuron] = Delta(network, set, layer, neuron);
                    }
                    else
                    {
                        deltas[layer][neuron] = Delta(network, set, layer, neuron, deltas[layer + 1]);
                    }

                    for (var input = 0; input < network.Weights[layer][neuron].Length; input++)
                    {
                        var delta = deltas[layer][neuron];

                        var errorPrime = 0.0;
                        if (input < outputs[layer].Length)
                        {
                            //No need for layer-1 since the addition of the inputs pushes all the layers +1
                            errorPrime = delta * outputs[layer/* - 1*/][input]; //Error prime = (d Error) / (d weight)
                        }
                        else
                        {
                            //Assume it's a bias neuron of value 1
                            errorPrime = delta * 1;
                        }

                        var deltaWeight = (-1.0) * trainingFactor * errorPrime;

                        var preError = network.Error(set, network.Weights);
                        var preErrorWeight = network.Weights[layer][neuron][input];

                        network.Weights[layer][neuron][input] += deltaWeight;

                        var postError = network.Error(set, network.Weights);
                        if (postError > preError)
                        {
                            network.Weights[layer][neuron][input] -= deltaWeight;
                        }
                    }
                }
            }
            return network.Weights;
        }
开发者ID:matthewsot,项目名称:zoltar,代码行数:58,代码来源:BackPropOptimizer.cs


注:本文中的Network.Error方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。