当前位置: 首页>>代码示例>>C#>>正文


C# Image._EqualizeHist方法代码示例

本文整理汇总了C#中Image._EqualizeHist方法的典型用法代码示例。如果您正苦于以下问题:C# Image._EqualizeHist方法的具体用法?C# Image._EqualizeHist怎么用?C# Image._EqualizeHist使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Image的用法示例。


在下文中一共展示了Image._EqualizeHist方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Detection

        private void Detection(object r, EventArgs e)
        {
            currentFrame = grabber.QueryFrame();
            currentFrame = grabber.QueryFrame().Resize(320, 240, Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC);
            DetectFace.Detect(currentFrame, "haarcascade_frontalface_default.xml", faces, out detectionTime);
            foreach (Rectangle face in faces)
            {    //result = currentFrame.Copy(face.rect).Convert<Gray, byte>().Resize(100, 100, Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC);
                currentFrame.Draw(face, new Bgr(Color.Red), 2);

                //Get copy of img and show it
                result = currentFrame.Copy(face).Convert<Gray, byte>().Resize(100, 100, Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC); //making small copy of face
                result._EqualizeHist();
                if (Eigen_Recog.IsTrained)
                {
                    string name = Eigen_Recog.Recognise(result);
                    //Draw the label for each face detected and recognized
                    currentFrame.Draw(name, ref font, new Point(face.X - 2, face.Y - 2), new Bgr(Color.LightGreen));
                }
            }

            //display the image
            ImageViewer.Image = currentFrame;
            labelTimeSpend.Text = detectionTime.ToString() + "msec";

            faces.Clear();
            currentFrame.Dispose();
        }
开发者ID:NameLegion,项目名称:Recognition,代码行数:27,代码来源:MainForm.cs

示例2: JanelaDetectarFace

        public JanelaDetectarFace(Mat pImagem)
        {
            InitializeComponent();
            mImagem = pImagem;
          //  currentFrame = new Image<Bgr, byte>(new Size(320, 240));
          //  CvInvoke.Resize(mImagem, currentFrame, new Size(320, 240), 0, 0, Emgu.CV.CvEnum.Inter.Cubic);
           // imagemDetect.Image = currentFrame.ToBitmap();
            if (Eigen_Recog.IsTrained)
            {
               // message_bar.Text = "Training Data loaded";
            }
            else
            {
                //message_bar.Text = "No training data found, please train program using Train menu option";
            }
            currentFrame = new Image<Bgr, byte>(new Size(820, 780));
            CvInvoke.Resize(mImagem, currentFrame, new Size(820, 780), 0, 0, Emgu.CV.CvEnum.Inter.Cubic);


            //Convert it to Grayscale
            if (currentFrame != null)
            {
                gray_frame = currentFrame.Convert<Gray, Byte>();

                //Face Detector
                Rectangle[] facesDetected = Face.DetectMultiScale(gray_frame, 1.2, 10, new Size(50, 50), Size.Empty);

                //Action for each element detected
                for (int i = 0; i < facesDetected.Length; i++)// (Rectangle face_found in facesDetected)
                {
                    //This will focus in on the face from the haar results its not perfect but it will remove a majoriy
                    //of the background noise
                    facesDetected[i].X += (int)(facesDetected[i].Height * 0.15);
                    facesDetected[i].Y += (int)(facesDetected[i].Width * 0.22);
                    facesDetected[i].Height -= (int)(facesDetected[i].Height * 0.3);
                    facesDetected[i].Width -= (int)(facesDetected[i].Width * 0.35);

                    result = currentFrame.Copy(facesDetected[i]).Convert<Gray, byte>().Resize(100, 100, Emgu.CV.CvEnum.Inter.Cubic);
                    result._EqualizeHist();
                    //draw the face detected in the 0th (gray) channel with blue color
                    currentFrame.Draw(facesDetected[i], new Bgr(Color.Red), 2);

                    if (Eigen_Recog.IsTrained)
                    {
                        string name = Eigen_Recog.Recognise(result);
                        int match_value = (int)Eigen_Recog.Get_Eigen_Distance;

                        //Draw the label for each face detected and recognized
                        currentFrame.Draw(name + "", new Point(facesDetected[i].X - 2, facesDetected[i].Y - 2), Emgu.CV.CvEnum.FontFace.HersheyDuplex, 1, new Bgr(Color.LightGreen));
                        // currentFrame.Draw(name + " ", ref font, new Point(facesDetected[i].X - 2, facesDetected[i].Y - 2), new Bgr(Color.LightGreen));
                        //  ADD_Face_Found(result, name, match_value);
                    }
                }
                //Show the faces procesed and recognized
                imagemDetect.Image = currentFrame.ToBitmap();
            }
        }
开发者ID:ludmila-omlopes,项目名称:surveillanceSystem32,代码行数:57,代码来源:JanelaDetectarFace.cs

示例3: Detect

        public void Detect(Image<Gray, Byte> sourceImage, List<Rectangle> objects)
        {
            //normalize image
            sourceImage._EqualizeHist();

            //detect objects
            Rectangle[] detectedObjects = Classifier.DetectMultiScale(sourceImage, 1.1, 10, new Size(40, 40), Size.Empty);

            //add detected face(s) to the list
            objects.AddRange(detectedObjects);
        }
开发者ID:AFMahmuda,项目名称:EmguCV_FERET,代码行数:11,代码来源:ObjectDetection.cs

示例4: Form1

        public Form1()
        {
            InitializeComponent();
            recognizer = new LBPHFaceRecognizer(1, 8, 8, 9, 65);

            classifier = new CascadeClassifier(haarcascade);
            GPU_classifier = new GpuCascadeClassifier(haarcascade_cuda);

            font = new MCvFont(Emgu.CV.CvEnum.FONT.CV_FONT_HERSHEY_TRIPLEX, 0.5, 0.5);
            if (File.Exists(@"traningdata.xml"))
            {
                recognizer.Load(@"traningdata.xml");
            }
            else
            {

                foreach (var file in Directory.GetFiles(Application.StartupPath + @"\Traning Faces\"))
                {
                    try { temp = new Image<Gray, Byte>(file); }
                    catch { continue; }
                    temp._EqualizeHist();

                    var detectedFaces = classifier.DetectMultiScale(temp, 1.1, 15, new Size(24, 24), Size.Empty);
                    if (detectedFaces.Length == 0)
                    {
                        continue;
                    }

                    temp.ROI = detectedFaces[0];
                    temp = temp.Copy();
                    temp = temp.Resize(100, 100, Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC);
                    imagesList.Add(temp);
                    imagesLabels.Add(Path.GetFileNameWithoutExtension(file));
                }
                for (int i = 0; i < imagesList.Count; i++)
                {
                    imagesLabels_indices.Add(i);
                }

                try { recognizer.Train(imagesList.ToArray(), imagesLabels_indices.ToArray()); }
                catch (Exception ex)
                {
                    MessageBox.Show(ex.Message);
                    Environment.Exit(0);
                }
            }
        }
开发者ID:mostafa741,项目名称:Face_recognition_LBP,代码行数:47,代码来源:Form1.cs

示例5: ObjectTracking

        public ObjectTracking(Image<Bgr, Byte> image, Rectangle ROI)
        {
            // Initialize parameters
            trackbox = new MCvBox2D();
            trackcomp = new MCvConnectedComp();
            hue = new Image<Gray, byte>(image.Width, image.Height);
            hue._EqualizeHist();
            mask = new Image<Gray, byte>(image.Width, image.Height);
            hist = new DenseHistogram(30, new RangeF(0, 180));
            backproject = new Image<Gray, byte>(image.Width, image.Height);

            // Assign Object's ROI from source image.
            trackingWindow = ROI;

            // Producing Object's hist
            CalObjectHist(image);
        }
开发者ID:jeremydai,项目名称:Digital-Image-Processing,代码行数:17,代码来源:ObjectTracking.cs

示例6: Detect

        public static void Detect(Image<Gray, byte> face)
        {
            //normalize
            face._EqualizeHist();

            //need pair of eyes. if not present, left and right eyes considered not detected
            Rectangle eyePairPos = DetectPairEyes(face);
            if (!eyePairPos.Equals(Rectangle.Empty))
            {
                //detecting each eyes
                Image<Gray, byte> eyePairImage = face.Copy(eyePairPos);
                BlinkStateManager.leftEyeDetected = DetectLeftEye(eyePairImage);
                BlinkStateManager.rightEyeDetected = DetectRighEye(eyePairImage);
            }
            else
            {
                BlinkStateManager.leftEyeDetected = false;
                BlinkStateManager.rightEyeDetected = false;
            }
        }
开发者ID:AFMahmuda,项目名称:EmguCV_FERET,代码行数:20,代码来源:BlinkDetector.cs

示例7: fnFindFacesThread

		void fnFindFacesThread()
		{
			while (IsRunning)
			{
				if (FSource.FrameChanged)
					lock(this)
					{
						FGrayImage = FSource.Img.Convert<Gray, Byte>();

						var stride = (FGrayImage.Width * 3);
						var align = stride % 4;

						if (align != 0)
						{
							stride += 4 - align;
						}
						
						FGrayImage._EqualizeHist();

						MCvAvgComp[] faceDetected = FHaarCascade.Detect(FGrayImage, 1.8, 4, HAAR_DETECTION_TYPE.DO_CANNY_PRUNING, new Size(FGrayImage.Width / 8, FGrayImage.Height / 8));


						Faces.Clear();

						foreach (MCvAvgComp f in faceDetected)
						{
							FaceTrackingFace face = new FaceTrackingFace();
							var faceVector = new Vector2D(f.rect.X + f.rect.Width / 2, f.rect.Y + f.rect.Height / 2);

							Vector2D CMaximumSourceXY = new Vector2D(FGrayImage.Width, FGrayImage.Height);

							face.Position = VMath.Map(faceVector, CMinimumSourceXY, CMaximumSourceXY, CMinimumDestXY, CMaximumDestXY, TMapMode.Float);
							face.Scale = VMath.Map(new Vector2D(f.rect.Width, f.rect.Height), CMinimumSourceXY.x, CMaximumSourceXY.x, 0, 2, TMapMode.Float);

							Faces.Add(face);
						}
					}
				
			}
		}
开发者ID:phlegma,项目名称:VVVV.Nodes.EmguCV,代码行数:40,代码来源:FaceTrackingNode.cs

示例8: DoNormalDetection

        // FaceDetection in the normal way
        public override void DoNormalDetection(string imagePath)
        {
            _image = new Image<Bgr, byte>(imagePath); //Read the files as an 8-bit Bgr image  
            _egray = _image.Convert<Gray, Byte>(); //Convert it to Grayscale
            _gray = _egray.Copy();    // Copy image in Grayscale            
            _egray._EqualizeHist(); // Equalize
            Image<Gray, Byte> tempgray = _egray.Copy();

            MCvAvgComp[][] facesDetected = _egray.DetectHaarCascade(_faces, 1.1, 1, Emgu.CV.CvEnum.HAAR_DETECTION_TYPE.DO_CANNY_PRUNING, new System.Drawing.Size(20, 20));


            foreach (MCvAvgComp f in facesDetected[0])
            {
                if (f.neighbors > 100)
                {
                    //_image.Draw(f.rect, new Bgr(System.Drawing.Color.Blue), 2); // face
                    tempgray.ROI = f.rect; //Set the region of interest on the faces
                    MCvAvgComp[][] eyesDetected = tempgray.DetectHaarCascade(_eyes, 1.1, 1, Emgu.CV.CvEnum.HAAR_DETECTION_TYPE.DO_CANNY_PRUNING, new System.Drawing.Size(20, 20));
                    if (eyesDetected[0].Length != 0)
                    {
                        foreach (MCvAvgComp e in eyesDetected[0])
                        {
                            if (e.neighbors > 100)
                            {
                                System.Drawing.Rectangle eyeRect = e.rect;
                                eyeRect.Offset(f.rect.X, f.rect.Y);
                                _image.Draw(eyeRect, new Bgr(System.Drawing.Color.Red), 2);
                            }
                        }
                    }

                }
            }

            this._processedImages = new IImage[3];
            this._processedImages[0] = _gray;
            this._processedImages[1] = _egray;
            this._processedImages[2] = _image;

        }
开发者ID:ravidasghodse,项目名称:genericva,代码行数:41,代码来源:EyesDetection.cs

示例9: Detect

        public static void Detect(Image<Gray, Byte> sourceImage, List<Rectangle> faces)
        {
            //normalize image
            sourceImage._EqualizeHist();

            //detect faces
            Rectangle[] detectedFaces = faceClassifier.DetectMultiScale(sourceImage, 1.1, 10, new Size(100, 100), Size.Empty);

            int heightInflate = 5, yOffset = -20;

            for (int i = 0; i < detectedFaces.Length; i++)
            {
                if (
                    detectedFaces[i].Top - (detectedFaces[i].Height / heightInflate) + (detectedFaces[i].Height / yOffset) > 0
                    &&
                    detectedFaces[i].Bottom + (detectedFaces[i].Width / heightInflate) - (detectedFaces[i].Height / yOffset) < sourceImage.Height)
                {
                    Rectangle temp = detectedFaces[i];
                    temp.Offset(0, detectedFaces[i].Height / yOffset);
                    temp.Inflate(0, detectedFaces[i].Height / heightInflate);
                    faces.Add(temp);
                }
            }
        }
开发者ID:AFMahmuda,项目名称:EmguCV_FERET,代码行数:24,代码来源:FaceDetection.cs

示例10: Segm_Process

 void Segm_Process()
 {
     //преобразование изображения в чб
     imgProcessed = imgOriginal.Convert<Gray, Byte>();
     //автоконтраст
     if (equalizeHist)
         imgProcessed._EqualizeHist();
     //фильтр шума
     Image<Gray, byte> smoothedGrayFrame = imgProcessed.PyrDown();
     smoothedGrayFrame = smoothedGrayFrame.PyrUp();
     Image<Gray, byte> cannyFrame = null;
     //поиск контуров, если работает с фильтром шума
     if (noiseFilter)
         cannyFrame = smoothedGrayFrame.Canny(nfVal, nfVal);
     //затемнение
     if (blur)
         imgProcessed = smoothedGrayFrame;
     //пороговое преобразование
     CvInvoke.cvAdaptiveThreshold(imgProcessed, imgProcessed, 255, Emgu.CV.CvEnum.ADAPTIVE_THRESHOLD_TYPE.CV_ADAPTIVE_THRESH_MEAN_C, Emgu.CV.CvEnum.THRESH.CV_THRESH_BINARY, 4 + 4 % 2 + 1, thresVal);
     //белое в черное
     imgProcessed._Not();
     try
     {
         if (cannyFrame != null)
             imgProcessed._Or(cannyFrame);
     }
     catch { }
     if (cannyFrame != null)
         cannyFrame = cannyFrame.Dilate(3);
     //поиск контуров
     var sourceContours = imgProcessed.FindContours(Emgu.CV.CvEnum.CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE, Emgu.CV.CvEnum.RETR_TYPE.CV_RETR_LIST);
     //фильтруем контуры
     contours = FilterContours(sourceContours, cannyFrame, imgProcessed.Width, imgProcessed.Height);
     ibOriginal.Image = imgProcessed;
 }
开发者ID:NikitaPirat,项目名称:controlPrg,代码行数:35,代码来源:Segment_Form.cs

示例11: piecesCheck

        private Image<Hls, Byte> piecesCheck(Image<Bgr, Byte> img)
        {
            Image<Hls, Byte> result = new Image<Hls, byte>(img.Bitmap).PyrDown().PyrUp();

            if (gaussian == true)
                result = result.SmoothGaussian(gaussianValue);

            if (contrast == true)
                result._EqualizeHist();

            //result[2] += saturation;

            int countBlack;
            int countWhite;

            for (int i = 0; i < 32; i++)
            {
                int x = (int)boxList[i].center.X;
                int y = (int)boxList[i].center.Y;

                countWhite = 0;
                countBlack = 0;

                byte asd = result.Data[y, x, 1];

                if (asd > whiteLightness)
                {
                    //countWhite++;
                    result.Draw(new CircleF(boxList[i].center, 3), new Hls(120, 50, 100), 3);
                }
                if (asd < blackLightness)
                {
                    //countBlack++;
                    result.Draw(new CircleF(boxList[i].center, 3), new Hls(220, 60, 100), 3);
                }
            }

            return result;
        }
开发者ID:kebabkiller,项目名称:Checkers_Check,代码行数:39,代码来源:CalibrationPage.xaml.cs

示例12: piecesCheck2

        private Image<Hls, Byte> piecesCheck2(Image<Bgr, Byte> img)
        {
            Image<Hls, Byte> result = new Image<Hls, byte>(img.Bitmap).PyrDown().PyrUp();

            Game a = new Game(leftRadio.IsChecked.Value);

            if (gaussian == true)
                result = result.SmoothGaussian(gaussianValue);

            if (contrast == true)
                result._EqualizeHist();

            //result[2] += saturation;

            int countBlack;
            int countWhite;

            List<int> gameState = new List<int>();

            for (int i = 0; i < 32; i++)
            {
                gameState.Add(2);
            }

            for (int i = 0; i < 32; i++)
            {
                int x = (int)boxList[i].center.X;
                int y = (int)boxList[i].center.Y;

                countWhite = 0;
                countBlack = 0;

                byte asd = result.Data[y, x, 1];

                if (asd > whiteLightness)
                {
                    countWhite++;
                    gameState[i] = 0;
                    result.Draw(new CircleF(boxList[i].center, 3), new Hls(120, 50, 100), 3);
                }
                if (asd < blackLightness)
                {
                    countBlack++;
                    gameState[i] = 1;
                    result.Draw(new CircleF(boxList[i].center, 3), new Hls(220, 60, 100), 3);
                }
            }

            previousGame = a;

            a.updateStatus(gameState);

            currentGame = a;

            return result;
        }
开发者ID:kebabkiller,项目名称:Checkers_Check,代码行数:56,代码来源:CalibrationPage.xaml.cs

示例13: SaveTrainingData

        public static bool SaveTrainingData(Image<Gray, byte> image, String name)
        {
            image = image.Resize(200, 200, Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC, false);//resize
            image._EqualizeHist();

            String uniqueNumber = DateTime.Now.ToString("yyMMddHHmmss");
            String filename = "face_" + name + "_" + uniqueNumber + ".jpg";
            if (!Directory.Exists(Application.StartupPath + "\\TrainedFaces\\"))
                Directory.CreateDirectory(Application.StartupPath + "\\TrainedFaces\\");

            image.ToBitmap().Save(Application.StartupPath + "\\TrainedFaces\\" + filename, ImageFormat.Jpeg);

            XmlDocument xmlFile = new XmlDocument();
            if (File.Exists(Application.StartupPath + "\\TrainedFaces\\TrainedLabels.xml"))
            {

                bool loading = true;
                while (loading)
                {
                    try
                    {
                        xmlFile.Load(Application.StartupPath + "\\TrainedFaces\\TrainedLabels.xml");
                        loading = false;
                    }
                    catch
                    {
                        xmlFile = null;
                        xmlFile = new XmlDocument();
                        Thread.Sleep(10);
                    }
                }

                XmlElement root = xmlFile.DocumentElement;

                XmlElement face_D = xmlFile.CreateElement("FACE");
                XmlElement name_D = xmlFile.CreateElement("NAME");
                XmlElement file_D = xmlFile.CreateElement("FILE");

                name_D.InnerText = name;
                file_D.InnerText = filename;

                face_D.AppendChild(name_D);
                face_D.AppendChild(file_D);
                root.AppendChild(face_D);

                xmlFile.Save(Application.StartupPath + "\\TrainedFaces\\TrainedLabels.xml");
            }

            else
            {
                FileStream fileStream = File.OpenWrite(Application.StartupPath + "\\TrainedFaces\\TrainedLabels.xml");
                using (XmlWriter xmlWriter = XmlWriter.Create(fileStream))
                {
                    xmlWriter.WriteStartDocument();
                    xmlWriter.WriteStartElement("Faces_For_Training");

                    xmlWriter.WriteStartElement("FACE");
                    xmlWriter.WriteElementString("NAME", name);
                    xmlWriter.WriteElementString("FILE", filename);
                    xmlWriter.WriteEndElement();

                    xmlWriter.WriteEndElement();
                    xmlWriter.WriteEndDocument();
                }
                fileStream.Dispose();

            }

            return true;
        }
开发者ID:AFMahmuda,项目名称:EmguCV_FERET,代码行数:70,代码来源:FaceRecognition.cs

示例14: TrainFrame

        private bool TrainFrame(int newid)
        {
            try
            {

                
                Image<Gray, byte> darkimage = new Image<Gray, byte>(ROIwidth, ROIheight);
                Image<Gray, byte> cropimage = new Image<Gray, byte>(ROIwidth, ROIheight);

                //ArrayList pic = new ArrayList();
                if (loadImage != null)
                {



                    var faces = face.Detect(loadImage, 1.3, 6, HAAR_DETECTION_TYPE.FIND_BIGGEST_OBJECT, new Size(120, 120), new Size(200, 200));
                    if (faces.Length > 0)
                    {
                        foreach (var facecount in faces)
                        {
                            facePosition = new Point(facecount.rect.X, facecount.rect.Y);
                            var eyeObjects = eyeWithGlass.DetectMultiScale(loadImage, 1.3, 6, minEye, maxEye);
                            if (eyeObjects.Length == 2)
                            {
                                Console.WriteLine("eye");
                                if (eyeObjects[0].X > eyeObjects[1].X)
                                {
                                    var temp = eyeObjects[0];
                                    eyeObjects[0] = eyeObjects[1];
                                    eyeObjects[1] = temp;
                                }
                                int betweeneLength = eyeObjects[1].X - eyeObjects[0].X;
                                int lefteyebrowpoint = eyeObjects[0].X;//
                                int righteyebrowpoint = eyeObjects[0].X + betweeneLength + eyeObjects[1].Width;//
                                int xxx = (int)((1.5 / 8.0) * betweeneLength);
                                int neareyebrowpoint = (int)(0.2 * betweeneLength);
                                int faceheight = (int)(2.3 * betweeneLength);

                                
                                loadImage.ROI = new Rectangle(new Point(lefteyebrowpoint - xxx, eyeObjects[0].Y - neareyebrowpoint), new Size((righteyebrowpoint + xxx) - (lefteyebrowpoint - xxx), faceheight));
                               
                                cropimage = loadImage.Copy().Resize(ROIwidth, ROIheight, INTER.CV_INTER_LINEAR);
                                loadImage.ROI = Rectangle.Empty;
                                loadImage.Draw(new Rectangle(new Point(lefteyebrowpoint - xxx, eyeObjects[0].Y - neareyebrowpoint), new Size((righteyebrowpoint + xxx) - (lefteyebrowpoint - xxx), faceheight)),new Gray(0),2);
                                if (!cropimage.Equals(darkimage))
                                {
                                    cropimage._EqualizeHist();
                                    
                                    imageBox7.Image = cropimage;     //line 2


                                    cropimage.Save(folderPath + tempPath);
                                    string dbPath = (folderPath + tempPath).Replace("\\","/");
                                    //mydb.InsertImageTraining(newid, dbPath, true);

                                    //File.Delete(tempPath);
                                    eigenRecog.reloadData();
                                    imageBox1.Image = loadImage;
                                    imageBox7.Image = cropimage;
                                    return true;
                                    //Fish_Recog.reloadData();
                                }
                                else
                                {
                                    imageBox1.Image = loadImage;
                                    imageBox7.Image = cropimage;
                                    return false;
                                }

                            }
                            else
                            {
                                return false;
                            }
                            
                        }
                    }
                    else
                    {
                        return false;
                    }
                }
                else
                {
                    return false;
                }

            }
            catch
            {
                return false;
            }
            return false;
        } 
开发者ID:pathom2000,项目名称:Face-Rcognition-with-Augmented-Reality,代码行数:94,代码来源:FormManualTrain.cs

示例15: timer1_Tick

        private void timer1_Tick(object sender, EventArgs e)
        {
            using (Image nextframe = cap.QueryFrame())
            {
                if (nextframe != null)
                {
                    if (isTrack == false)
                    {
                        Image grayframe = nextframe.Convert();
                        grayframe._EqualizeHist();

                        var faces = grayframe.DetectHaarCascade(haar, 1.4, 4, HAAR_DETECTION_TYPE.FIND_BIGGEST_OBJECT | HAAR_DETECTION_TYPE.DO_CANNY_PRUNING, new Size(40, 40))[0];

                        hsv = new Image(grayframe.Width, grayframe.Height);
                        hsv = nextframe.Convert();
                        hsv._EqualizeHist();

                        hue = new Image(grayframe.Width, grayframe.Height);
                        mask = new Image(grayframe.Width, grayframe.Height);
                        backproject = new Image(grayframe.Width, grayframe.Height);

                        Emgu.CV.CvInvoke.cvInRangeS(hsv, new MCvScalar(0, 30, Math.Min(10, 255), 0), new MCvScalar(180, 256, Math.Max(10, 255), 0), mask);
                        Emgu.CV.CvInvoke.cvSplit(hsv, hue, IntPtr.Zero, IntPtr.Zero, IntPtr.Zero);

                        picHue.Image = hue.ToBitmap();

                        foreach (var face in faces)
                        {

                            // Rectangle roi = new Rectangle(face.rect.X + face.rect.Width / 4, face.rect.Y + face.rect.Height / 4, face.rect.Width / 2, face.rect.Height / 2);
                            // Rectangle roi = new Rectangle(face.rect.X, face.rect.Y, face.rect.Width / 2, face.rect.Height / 2);

                            Emgu.CV.CvInvoke.cvSetImageROI(hue, face.rect);
                            Emgu.CV.CvInvoke.cvSetImageROI(mask, face.rect);

                            nextframe.Draw(face.rect, new Bgr(0, double.MaxValue, 1), 2);
                            picMask.Image = mask.ToBitmap();
                            trackwin = face.rect;

                        }
                        img = new IntPtr[1]
            {
            hue
            };

                        Emgu.CV.CvInvoke.cvCalcHist(img, hist, false, mask);

                        Emgu.CV.CvInvoke.cvResetImageROI(hue);
                        Emgu.CV.CvInvoke.cvResetImageROI(mask);

                        CapImg.Image = nextframe.ToBitmap();
                        isTrack = true;
                        // isTrack = true;
                    }
                    else
                    {
                        if (trackwin != null)
                        {
                            hsv = nextframe.Convert();
                            Emgu.CV.CvInvoke.cvInRangeS(hsv, new MCvScalar(0, 30, 10, 0), new MCvScalar(180, 256, 256, 0), mask);
                            Emgu.CV.CvInvoke.cvSplit(hsv, hue, IntPtr.Zero, IntPtr.Zero, IntPtr.Zero);
                            picMask.Image = mask.ToBitmap();
                            picHue.Image = hue.ToBitmap();

                        }

                        img = new IntPtr[1]
            {
            hue
            };

                        Emgu.CV.CvInvoke.cvCalcBackProject(img, backproject, hist);
                        Emgu.CV.CvInvoke.cvAnd(backproject, mask, backproject, IntPtr.Zero);

                        Image grayframe = nextframe.Convert();
                        grayframe._EqualizeHist();

                        var faces = grayframe.DetectHaarCascade(haar, 1.4, 4, HAAR_DETECTION_TYPE.FIND_BIGGEST_OBJECT | HAAR_DETECTION_TYPE.DO_CANNY_PRUNING, new Size(40, 40))[0];
                        foreach (var face in faces)
                        {
                            nextframe.Draw(face.rect, new Bgr(Color.Black), 2);
                        }

                        if (trackwin.Width == 0) trackwin.Width = 40;
                        if (trackwin.Height == 0) trackwin.Height = 40;

                        Emgu.CV.CvInvoke.cvCamShift(backproject, trackwin, new MCvTermCriteria(10, 0.1), out trackcomp, out trackbox);
                        trackwin = trackcomp.rect;

                        // CvInvoke.cvEllipseBox(nextframe, trackbox, new MCvScalar(0, 255, 0), 2, LINE_TYPE.CV_AA, 0);

                        nextframe.Draw(trackwin, new Bgr(Color.Blue), 3);
                        CapImg.Image = nextframe.ToBitmap();
                        faceS = nextframe.Copy(trackwin);
                        picFace.Image = faceS.ToBitmap();

                    }
                }

            }
//.........这里部分代码省略.........
开发者ID:smiron,项目名称:stereo-face-recognition,代码行数:101,代码来源:Class1.cs


注:本文中的Image._EqualizeHist方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。