当前位置: 首页>>代码示例>>C#>>正文


C# Image.CopyBlank方法代码示例

本文整理汇总了C#中Image.CopyBlank方法的典型用法代码示例。如果您正苦于以下问题:C# Image.CopyBlank方法的具体用法?C# Image.CopyBlank怎么用?C# Image.CopyBlank使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Image的用法示例。


在下文中一共展示了Image.CopyBlank方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Process

        public DetectorResult Process(Image<Bgr, byte> rawFrame, Image<Gray, byte> grayFrame)
        {
            Image<Bgr, byte> contourImage = null;
            if (rawFrame != null)
            {
                List<Point[]> polygon = new List<Point[]>();      // to draw the perimeter

                Image<Gray, byte> gray = rawFrame.Convert<Gray, byte>();               // convert source to gray
                Image<Gray, byte> thresh = gray.PyrDown().PyrUp();                  // attempt to make edges more distinct?

                using (Image<Gray, Byte> mask = new Image<Gray, byte>(thresh.Size))
                using (Image<Gray, byte> cannyImg = thresh.Canny(new Gray(10), new Gray(50)))
                using (Image<Gray, byte> dilateImg = cannyImg.Dilate(1))

                using (MemStorage stor = new MemStorage())
                {
                    mask.SetValue(255.0);
                    for (
                       Contour<Point> contours = dilateImg.FindContours(
                          Emgu.CV.CvEnum.CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE,
                          Emgu.CV.CvEnum.RETR_TYPE.CV_RETR_EXTERNAL,
                          stor);
                       contours != null; contours = contours.HNext)
                    {
                        Rectangle rect = contours.BoundingRectangle;
                        int area = rect.Height * rect.Width;
                        if (area > 30000)
                        {
                            rect.X -= 1; rect.Y -= 1; rect.Width += 2; rect.Height += 2;
                            rect.Intersect(gray.ROI);
                            mask.Draw(rect, new Gray(0.0), -1);

                            polygon.Add(contours.ToArray());
                        }
                    }

                    thresh.SetValue(0, mask);
                }

                contourImage = new Image<Bgr, byte>(gray.Bitmap);
                contourImage.CopyBlank();

                foreach (Point[] points in polygon)
                    contourImage.DrawPolyline(points, true, new Bgr(Color.Red), 2);
            }
            var result = new DetectorResult()
                             {
                                 Confidence = 100,
                                 GrayImage = grayFrame,
                                 ProcessedImage = contourImage,
                                 RawImage = rawFrame
                             };
            return result;
        }
开发者ID:genecyber,项目名称:PredatorCV,代码行数:54,代码来源:Contour.cs

示例2: GetGradientMagnitude


//.........这里部分代码省略.........
                Image<Gray, Byte> gray = photo5.Convert<Gray, byte>();
                CircleF[] circles = gray.HoughCircles(
                    cannyThreshold,
                    circleAccumulatorThreshold,
                    5.0, //Resolution of the accumulator used to detect centers of the circles
                    10.0, //min distance
                    5, //min radius
                    0 //max radius
                    )[0]; //Get the circles from the first channel

                Image<Gray, Byte> cannyEdges = gray.Canny(180, 120);
                LineSegment2D[] lines = cannyEdges.HoughLinesBinary(
                    1, //Distance resolution in pixel-related units
                    Math.PI / 45.0, //Angle resolution measured in radians.
                    20, //threshold
                    30, //min Line width
                    10 //gap between lines
                    )[0]; //Get the lines from the first channel

                #region Find triangles and rectangles
                List<Triangle2DF> triangleList = new List<Triangle2DF>();
                List<MCvBox2D> boxList = new List<MCvBox2D>();
            //double largestarea = 0;
            using (MemStorage storage = new MemStorage()) //allocate storage for contour approximation
                    for (Contour<Point> contours = cannyEdges.FindContours(); contours != null; contours = contours.HNext)
                    {
                        Contour<Point> currentContour = contours.ApproxPoly(contours.Perimeter * 0.05, storage);
                    double largestarea = contours.Area;
                    string p = largestarea.ToString();  // จะแสดงค่าขนาดพื้นที่ของรูปภาพแต่ทำไม่ได้
                    textBox1.Text = p;
                    //MessageBox.Show(largestarea);

                    if (contours.Area > 250) //only consider contours with area greater than 250
                       //MessageBox.Show(contours.Area);

                    {
                            if (currentContour.Total == 3) //The contour has 3 vertices, it is a triangle
                            {
                                Point[] pts = currentContour.ToArray();
                                triangleList.Add(new Triangle2DF(
                                   pts[0],
                                   pts[1],
                                   pts[2]
                                   ));
                           // String text = _ocr.GetText(); หาขนาดแล้วไปแสดงใน text box
                           // ocrTextBox.Text = text;

                        }
                            else if (currentContour.Total == 4) //The contour has 4 vertices.
                            {
                                #region determine if all the angles in the contour are within the range of [80, 100] degree
                                bool isRectangle = true;
                                Point[] pts = currentContour.ToArray();
                                LineSegment2D[] edges = PointCollection.PolyLine(pts, true);

                                for (int i = 0; i < edges.Length; i++)
                                {
                                    double angle = Math.Abs(
                                       edges[(i + 1) % edges.Length].GetExteriorAngleDegree(edges[i]));
                                    if (angle < 80 || angle > 100)
                                    {
                                        isRectangle = false;
                                        break;
                                    }
                                }
                                #endregion

                                if (isRectangle) boxList.Add(currentContour.GetMinAreaRect());
                            }
                        }
                    }
            #endregion
            //pictureBox6.Image = photo5.ToBitmap();
            pictureBox6.Image = cannyEdges.ToBitmap();

                       #region draw triangles and rectangles
                       Image<Bgr, Byte> triangleRectangleImage = photo5.CopyBlank();
                       foreach (Triangle2DF triangle in triangleList)
                           triangleRectangleImage.Draw(triangle, new Bgr(Color.DarkBlue), 2);
                       foreach (MCvBox2D box in boxList)
                           triangleRectangleImage.Draw(box, new Bgr(Color.DarkOrange), 2);
                           pictureBox7.Image = triangleRectangleImage.ToBitmap();
                        #endregion

                        #region draw circles
                        Image<Bgr, Byte> circleImage = photo5.CopyBlank();
                       foreach (CircleF circle in circles)
                           circleImage.Draw(circle, new Bgr(Color.Brown), 2);
                      // circleImageBox.Image = circleImage;
                      pictureBox8.Image = circleImage.ToBitmap();
                        #endregion
            /*
                       #region draw lines
                       Image<Bgr, Byte> lineImage = img.CopyBlank();
                       foreach (LineSegment2D line in lines)
                           lineImage.Draw(line, new Bgr(Color.Green), 2);
                       lineImageBox.Image = lineImage;
                       #endregion
             */
        }
开发者ID:supatsorn,项目名称:Project_,代码行数:101,代码来源:Form1.cs

示例3: button1_Click

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog Openfile = new OpenFileDialog();
            if (Openfile.ShowDialog() == DialogResult.OK)
            {
                //Load the Image
                Image<Bgr, Byte> My_Image = new Image<Bgr, byte>(Openfile.FileName);

                //Convert the image to grayscale and filter out the noise
                Image<Gray, Byte> gray = My_Image.Convert<Gray, Byte>().PyrDown().PyrUp();

                Gray cannyThreshold = new Gray(180);
                Gray cannyThresholdLinking = new Gray(120);
                Gray circleAccumulatorThreshold = new Gray(120);

                CircleF[] circles = gray.HoughCircles(
                cannyThreshold,
                circleAccumulatorThreshold,
                5.0, //Resolution of the accumulator used to detect centers of the circles
                10.0, //min distance 
                5, //min radius
                0 //max radius
                )[0]; //Get the circles from the first channel

                Image<Gray, Byte> cannyEdges = gray.Canny(cannyThreshold, cannyThresholdLinking);
                LineSegment2D[] lines = cannyEdges.HoughLinesBinary(
                    1, //Distance resolution in pixel-related units
                    Math.PI / 45.0, //Angle resolution measured in radians.
                    20, //threshold
                    30, //min Line width
                    10 //gap between lines
                    )[0]; //Get the lines from the first channel

                #region Find triangles and rectangles
                List<Triangle2DF> triangleList = new List<Triangle2DF>();
                List<MCvBox2D> boxList = new List<MCvBox2D>();

                using (MemStorage storage = new MemStorage()) //allocate storage for contour approximation
                   for (Contour<Point> contours = cannyEdges.FindContours(); contours != null; contours = contours.HNext)
                   {
                      Contour<Point> currentContour = contours.ApproxPoly(contours.Perimeter * 0.05, storage);
 
                      if (contours.Area > 250) //only consider contours with area greater than 250
                      {
                         if (currentContour.Total == 3) //The contour has 3 vertices, it is a triangle
                         {
                            Point[] pts = currentContour.ToArray();
                            triangleList.Add(new Triangle2DF(
                               pts[0],
                               pts[1],
                               pts[2]
                               ));
                         }
                         else if (currentContour.Total == 4) //The contour has 4 vertices.
                         {
                            #region determine if all the angles in the contour are within the range of [80, 100] degree
                            bool isRectangle = true;
                            Point[] pts = currentContour.ToArray();
                            LineSegment2D[] edges = PointCollection.PolyLine(pts, true);
 
                            for (int i = 0; i < edges.Length; i++)
                            {
                               double angle = Math.Abs(
                                  edges[(i + 1) % edges.Length].GetExteriorAngleDegree(edges[i]));
                               if (angle < 80 || angle > 100)
                               {
                                  isRectangle = false;
                                  break;
                               }
                            }
                            #endregion
 
                            if (isRectangle) boxList.Add(currentContour.GetMinAreaRect());
                         }
                      }
                   }
                #endregion
                originalImageBox.Image = My_Image.ToBitmap();

                #region draw triangles and rectangles
                Image<Bgr, Byte> triangleRectangleImage = My_Image.CopyBlank();
                foreach (Triangle2DF triangle in triangleList)
                    triangleRectangleImage.Draw(triangle, new Bgr(Color.DarkBlue), 2);
                foreach (MCvBox2D box in boxList)
                    triangleRectangleImage.Draw(box, new Bgr(Color.DarkOrange), 2);
                triangleRectangleImageBox.Image = triangleRectangleImage.ToBitmap();
                #endregion

                #region draw circles
                Image<Bgr, Byte> circleImage = My_Image.CopyBlank();
                foreach (CircleF circle in circles)
                    circleImage.Draw(circle, new Bgr(Color.Brown), 2);
                circleImageBox.Image = circleImage.ToBitmap();
                #endregion

                #region draw lines
                Image<Bgr, Byte> lineImage = My_Image.CopyBlank();
                foreach (LineSegment2D line in lines)
                    lineImage.Draw(line, new Bgr(Color.Green), 2);
                lineImageBox.Image = lineImage.ToBitmap();
//.........这里部分代码省略.........
开发者ID:petrind,项目名称:SRTesis2,代码行数:101,代码来源:FormSURFFeatureDetection.cs

示例4: ImageGrabbed


//.........这里部分代码省略.........
                    }

                    //draw the results
                    _img.Draw(new CircleF(_corners[0], 3), new Bgr(Color.Yellow), 1);
                    for (int i = 1; i < _corners.Length; i++)
                    {
                        _img.Draw(new LineSegment2DF(_corners[i - 1], _corners[i]), _lineColourArray[i], 2);
                        _img.Draw(new CircleF(_corners[i], 3), new Bgr(Color.Yellow), 1);
                    }
                    //calibrate the delay bassed on size of buffer
                    //if buffer small you want a big delay if big small delay
                    Thread.Sleep(100);//allow the user to move the board to a different position
                }
                _corners = null;
            }
            if (_camera.Calibration.CurrentMode == CameraCalibrationMode.CalculatingIntrinsics)
            {
                //we can do this in the loop above to increase speed
                for (int k = 0; k < _frameArrayBuffer.Length; k++)
                {

                    _cornersPointsList[k] = CameraCalibration.FindChessboardCorners(_frameArrayBuffer[k], _patternSize, CALIB_CB_TYPE.ADAPTIVE_THRESH);
                    //for accuracy
                    _grayFrame.FindCornerSubPix(_cornersPointsList, new Size(11, 11), new Size(-1, -1), new MCvTermCriteria(30, 0.1));

                    //Fill our objects list with the real world mesurments for the intrinsic calculations
                    List<MCvPoint3D32f> objectList = new List<MCvPoint3D32f>();
                    for (int i = 0; i < Height; i++)
                    {
                        for (int j = 0; j < Width; j++)
                        {
                            objectList.Add(new MCvPoint3D32f(j * 20.0F, i * 20.0F, 0.0F));
                        }
                    }
                    _cornersObjectList[k] = objectList.ToArray();
                }
                ExtrinsicCameraParameters[] ex;
                //our error should be as close to 0 as possible
                _camera.Calibration.Error = CameraCalibration.CalibrateCamera(
                    _cornersObjectList, 
                    _cornersPointsList, 
                    _grayFrame.Size, 
                    _camera.Calibration.IntrinsicParameters, 
                    CALIB_TYPE.CV_CALIB_RATIONAL_MODEL, 
                    new MCvTermCriteria(30, 0.1), 
                    out ex);

                //_camera.Calibration.ExtrinsicParameters = ex;

                //set up to allow another calculation
                //SetButtonState(true);
                _camera.Calibration.StartFlag = false;

                //If Emgu.CV.CvEnum.CALIB_TYPE == CV_CALIB_USE_INTRINSIC_GUESS and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be initialized before calling the function
                //if you use FIX_ASPECT_RATIO and FIX_FOCAL_LEGNTH options, these values needs to be set in the intrinsic parameters before the CalibrateCamera function is called. Otherwise 0 values are used as default.
                Console.WriteLine("Intrinsic Calculation Error: " + _camera.Calibration.Error); //display the results to the user
                _camera.Calibration.CurrentMode = CameraCalibrationMode.Calibrated;
            }
            if (_camera.Calibration.CurrentMode == CameraCalibrationMode.Calibrated)
            {
                _corners = CameraCalibration.FindChessboardCorners(_grayFrame, _patternSize, CALIB_CB_TYPE.ADAPTIVE_THRESH);
                //we use this loop so we can show a colour image rather than a gray: 
                //CameraCalibration.DrawChessboardCorners(Gray_Frame, patternSize, corners);

                if (_corners != null) //chess board found
                {
                    //make mesurments more accurate by using FindCornerSubPixel
                    _grayFrame.FindCornerSubPix(new PointF[1][] { _corners }, new Size(11, 11), new Size(-1, -1), new MCvTermCriteria(30, 0.1));

                    //draw the results
                    _img.Draw(new CircleF(_corners[0], 3), new Bgr(Color.Yellow), 1);
                    for (int i = 1; i < _corners.Length; i++)
                    {
                        _img.Draw(new LineSegment2DF(_corners[i - 1], _corners[i]), _lineColourArray[i], 2);
                        _img.Draw(new CircleF(_corners[i], 3), new Bgr(Color.Yellow), 1);
                    }
                    //calibrate the delay bassed on size of buffer
                    //if buffer small you want a big delay if big small delay
                    Thread.Sleep(100);//allow the user to move the board to a different position
                }
                //display the original image
                //Sub_PicturBox.Image = img.ToBitmap();
                //calculate the camera intrinsics
                Matrix<float> map1, map2;
                _camera.Calibration.IntrinsicParameters.InitUndistortMap(_img.Width, _img.Height, out map1, out map2);

                //remap the image to the particular intrinsics
                //In the current version of EMGU any pixel that is not corrected is set to transparent allowing the original image to be displayed if the same
                //image is mapped backed, in the future this should be controllable through the flag '0'
                Image<Bgr, Byte> temp = _img.CopyBlank();
                CvInvoke.cvRemap(_img, temp, map1, map2, 0, new MCvScalar(0));
                _img = temp.Copy();
            }
            if(!_ctsCameraCalibration.Token.IsCancellationRequested)
            {
                BitmapSource bitmapSource = BitmapHelper.ToBitmapSource(_img);
                bitmapSource.Freeze();
                _camera.ImageSource = bitmapSource;
            }
        }
开发者ID:cosmo1911,项目名称:UniMoveStation,代码行数:101,代码来源:CameraCalibrationService.cs

示例5: _Capture_ImageGrabbed

        /// <summary>
        /// main function processing of the image data
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        void _Capture_ImageGrabbed(object sender, EventArgs e)
        {
            //lets get a frame from our capture device
            img = _Capture.RetrieveBgrFrame();
            Gray_Frame = img.Convert<Gray, Byte>();

            //apply chess board detection
            if (currentMode == Mode.SavingFrames)
            {
                corners = CameraCalibration.FindChessboardCorners(Gray_Frame, patternSize, Emgu.CV.CvEnum.CALIB_CB_TYPE.ADAPTIVE_THRESH);
                //we use this loop so we can show a colour image rather than a gray: //CameraCalibration.DrawChessboardCorners(Gray_Frame, patternSize, corners);

                if (corners != null) //chess board found
                {
                    //make mesurments more accurate by using FindCornerSubPixel
                    Gray_Frame.FindCornerSubPix(new PointF[1][] { corners }, new System.Drawing.Size(11, 11), new System.Drawing.Size(-1, -1), new MCvTermCriteria(30, 0.1));

                    //if go button has been pressed start aquiring frames else we will just display the points
                    if (start_Flag)
                    {
                        Frame_array_buffer[frame_buffer_savepoint] = Gray_Frame.Copy(); //store the image
                        frame_buffer_savepoint++;//increase buffer positon

                        //check the state of buffer
                        if (frame_buffer_savepoint == Frame_array_buffer.Length) currentMode = Mode.Caluculating_Intrinsics; //buffer full
                    }

                    //dram the results
                    img.Draw(new CircleF(corners[0], 3), new Bgr(System.Drawing.Color.Yellow), 1);
                    for (int i = 1; i < corners.Length; i++)
                    {
                        img.Draw(new LineSegment2DF(corners[i - 1], corners[i]), line_colour_array[i], 2);
                        img.Draw(new CircleF(corners[i], 3), new Bgr(System.Drawing.Color.Yellow), 1);
                    }
                    //calibrate the delay bassed on size of buffer
                    //if buffer small you want a big delay if big small delay
                    Thread.Sleep(100);//allow the user to move the board to a different position
                }
                corners = null;
            }
            if (currentMode == Mode.Caluculating_Intrinsics)
            {
                //we can do this in the loop above to increase speed
                for (int k = 0; k < Frame_array_buffer.Length; k++)
                {

                    corners_points_list[k] = CameraCalibration.FindChessboardCorners(Frame_array_buffer[k], patternSize, Emgu.CV.CvEnum.CALIB_CB_TYPE.ADAPTIVE_THRESH);
                    //for accuracy
                    Gray_Frame.FindCornerSubPix(corners_points_list, new System.Drawing.Size(11, 11), new System.Drawing.Size(-1, -1), new MCvTermCriteria(30, 0.1));

                    //Fill our objects list with the real world mesurments for the intrinsic calculations
                    List<MCvPoint3D32f> object_list = new List<MCvPoint3D32f>();
                    for (int i = 0; i < height; i++)
                    {
                        for (int j = 0; j < width; j++)
                        {
                            object_list.Add(new MCvPoint3D32f(j * 20.0F, i * 20.0F, 0.0F));
                        }
                    }
                    corners_object_list[k] = object_list.ToArray();
                }

                //our error should be as close to 0 as possible

                double error = CameraCalibration.CalibrateCamera(corners_object_list, corners_points_list, Gray_Frame.Size, IC, Emgu.CV.CvEnum.CALIB_TYPE.CV_CALIB_RATIONAL_MODEL, new MCvTermCriteria(30, 0.1), out EX_Param);
                //If Emgu.CV.CvEnum.CALIB_TYPE == CV_CALIB_USE_INTRINSIC_GUESS and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be initialized before calling the function
                //if you use FIX_ASPECT_RATIO and FIX_FOCAL_LEGNTH options, these values needs to be set in the intrinsic parameters before the CalibrateCamera function is called. Otherwise 0 values are used as default.
                System.Windows.Forms.MessageBox.Show("Intrinsic Calculation Error: " + error.ToString(), "Results", MessageBoxButtons.OK, MessageBoxIcon.Information); //display the results to the user
                currentMode = Mode.Calibrated;
                this.Dispatcher.Invoke((Action)(() =>
                {
                    Write_BTN.IsEnabled = true;
                }));
            }
            if (currentMode == Mode.Calibrated)
            {
                //calculate the camera intrinsics
                Matrix<float> Map1, Map2;
                IC.InitUndistortMap(img.Width, img.Height, out Map1, out Map2);

                //remap the image to the particular intrinsics
                //In the current version of EMGU any pixel that is not corrected is set to transparent allowing the original image to be displayed if the same
                //image is mapped backed, in the future this should be controllable through the flag '0'
                Image<Bgr, Byte> temp = img.CopyBlank();
                CvInvoke.cvRemap(img, temp, Map1, Map2, 0, new MCvScalar(0));
                img = temp.Copy();

                //set up to allow another calculation
                SetButtonState(true);
                start_Flag = false;
            }
            Image<Bgr, byte> mainImage = img.Resize(((double)Main_Picturebox.Width / (double)img.Width), Emgu.CV.CvEnum.INTER.CV_INTER_LINEAR);
            Main_Picturebox.Image = mainImage;
        }
开发者ID:surgical-robots,项目名称:robot-control-app,代码行数:99,代码来源:GraphicalView.xaml.cs

示例6: _Capture_ImageGrabbed


//.........这里部分代码省略.........
                }

                //our error should be as close to 0 as possible

                double error = CameraCalibration.CalibrateCamera(corners_object_list, corners_points_list, Gray_Frame.Size, IC, Emgu.CV.CvEnum.CALIB_TYPE.CV_CALIB_RATIONAL_MODEL, out EX_Param);
                //If Emgu.CV.CvEnum.CALIB_TYPE == CV_CALIB_USE_INTRINSIC_GUESS and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be initialized before calling the function
                //if you use FIX_ASPECT_RATIO and FIX_FOCAL_LEGNTH options, these values needs to be set in the intrinsic parameters before the CalibrateCamera function is called. Otherwise 0 values are used as default.
                MessageBox.Show("Intrinsic Calculation Error: " + error.ToString(), "Results", MessageBoxButtons.OK, MessageBoxIcon.Information); //display the results to the user
                currentMode = Mode.Calibrated;
                for (int i1 = 0; i1 < 8; i1++)
                {
                    Console.Write(IC.DistortionCoeffs[i1,0].ToString()+"\n");                    
                }
                for (int i1 = 0; i1 < 3; i1++)
                {
                    for (int j1 = 0; j1 < 3;j1++ )
                        Console.Write(IC.IntrinsicMatrix[i1, j1].ToString()+"\t");
                    Console.Write("\n");
                }
                
                
            }
            if (currentMode == Mode.Calibrated)
            {
                //display the original image
                Sub_PicturBox.Image = img.ToBitmap();
                //calculate the camera intrinsics
                Matrix<float> Map1, Map2;
                IC.InitUndistortMap(img.Width, img.Height, out Map1, out Map2);

                //remap the image to the particular intrinsics
                //In the current version of EMGU any pixel that is not corrected is set to transparent allowing the original image to be displayed if the same
                //image is mapped backed, in the future this should be controllable through the flag '0'
                Image<Bgr, Byte> temp = img.CopyBlank();
                CvInvoke.cvRemap(img, temp, Map1, Map2, 0, new MCvScalar(0));

                //added for corner drawing
                Gray_Frame = temp.Convert<Gray, Byte>();
                corners = CameraCalibration.FindChessboardCorners(Gray_Frame, patternSize, Emgu.CV.CvEnum.CALIB_CB_TYPE.ADAPTIVE_THRESH);
                //we use this loop so we can show a colour image rather than a gray: //CameraCalibration.DrawChessboardCorners(Gray_Frame, patternSize, corners);

                if (corners != null) //chess board found
                {
                    //make mesurments more accurate by using FindCornerSubPixel
                    Gray_Frame.FindCornerSubPix(new PointF[1][] { corners }, new Size(11, 11), new Size(-1, -1), new MCvTermCriteria(30, 0.1));


                    //dram the results
                    temp.Draw(new CircleF(corners[0], 3), new Bgr(Color.Yellow), 1);
                    //CSV Writing before your loop
                    var csv = new StringBuilder();
                    string dirSave = Directory.GetCurrentDirectory() + "/Resources/dirSave";
                    string filePath = dirSave + "/dataChessBoardCalibrated.csv";
                    var newLine = ""; var newItem = "";
                    newLine = string.Format("{0}", Environment.NewLine);

                    if (!File.Exists(filePath))
                    {
                        for (int i = 1; i < corners.Length; i++)
                        {
                            newItem = i.ToString() + ", ";
                            csv.Append(newItem);
                        }

                        csv.Append(newLine);
                        File.WriteAllText(filePath, csv.ToString());
开发者ID:petrind,项目名称:SRTesis2,代码行数:67,代码来源:FrameShooterCameraCalib.cs

示例7: GetFFT_InverseAmpAndPhase

        /// <summary>
        /// Calculate Inverse FFT
        /// </summary>
        /// <param name="fft_Amp1"></param>
        /// <param name="fft_Phase2"></param>
        /// <returns></returns>
        internal static Image<Gray, byte> GetFFT_InverseAmpAndPhase(Image<Gray, float> fft_Amp, Image<Gray, float> fft_Phase)
        {
            //rearange the fft output
            fft_Amp = FFT2shift(fft_Amp,true);
            fft_Phase = FFT2shift(fft_Phase,true);

            // Get amplitude and Phase Channels
            Image<Gray, float> imgFFT_Re = fft_Amp.CopyBlank();
            Image<Gray, float> imgFFT_Im = fft_Amp.CopyBlank();
            CvInvoke.cvPolarToCart(fft_Amp, fft_Phase, imgFFT_Re, imgFFT_Im, false);

            return GetFFT_InverseReAndIm(imgFFT_Re, imgFFT_Im);
        }
开发者ID:jmdbo,项目名称:SS,代码行数:19,代码来源:FFT.cs

示例8: detectHardHat

        //faceDetection ends
        //Detect Hard Hat in the image
        private Image<Bgr, Byte> detectHardHat(Image<Bgr,Byte> image)
        {
            Console.Out.WriteLine("Detecting Hard Hat...");
            try
            {
                MCvAvgComp[] faces = faceDetection(image);
                Image<Bgr, Byte> newImage = image.CopyBlank();
                foreach (MCvAvgComp face in faces)
                {
                    //Counter for the cirles in the processed image
                    int counter = 0;

                    //Object to store the region of the head above face for analysis
                    var headRegion = face;
                    headRegion.rect.Height = (face.rect.Height) ;
                    headRegion.rect.Y = face.rect.Y - (face.rect.Height * 8) / 10;
                    headRegion.rect.Width = face.rect.Width + face.rect.Width;
                    headRegion.rect.X = face.rect.X - (face.rect.Width * 2) / 4;

                    //Set the region of the image to headRegion for analysis
                    image.ROI = headRegion.rect;

                    //Object to store the region of the hard hat for display
                    var hardHat = face;
                    hardHat.rect.Height = face.rect.Height;
                    hardHat.rect.Y = face.rect.Y - (face.rect.Height * 8) / 10;
                    hardHat.rect.Width = face.rect.Width;
                    hardHat.rect.X = face.rect.X;

                    //Convert Image to HSV format for filtering
                    Image<Hsv, Byte> hsv = image.Convert<Hsv, Byte>();
                    //Apply the red color filter in the HSV model
                    grayScale_Image = hsv.InRange(new Hsv(0, 80, 80), new Hsv(20, 200, 200));

                    //List to store the contour region
                    List<Contour<Point>> list = new List<Contour<Point>>();

                    //Find the canny of the filtered image
                    grayScale_Image = cannyEdgeDetect(grayScale_Image.Convert<Bgr, Byte>(), 100, 50);

                    Console.Out.WriteLine("Head>" + headRegion.rect.Height + ":::" + headRegion.rect.Width);
                    //return grayScale_Image.Convert<Bgr, Byte>();
                    //Find the contours
                    Contour<Point> ctrs = grayScale_Image.FindContours();

                    while (ctrs != null)
                    {
                        Contour<Point> ctr = ctrs.ApproxPoly(2);
                        if (ctr.Area > 1) { list.Add(ctr); }
                        ctrs = ctrs.HNext;
                    }
                    foreach (Contour<Point> lis in list)
                    {
                        newImage.Draw(lis, new Bgr(Color.White), 1);
                    }
                    //newImage.ROI = headRegion.rect;

                    CircleF[] circles = grayScale_Image.HoughCircles(new Gray(220), new Gray(160), 5, 40, (headRegion.rect.Height *7)/20, headRegion.rect.Height/2)[0];
                    foreach (CircleF circle in circles)
                    {
                        counter++;
                        //image.Draw(circle, new Bgr(0, 255, 0), 2);
                    }
                    //return newImage.Convert<Bgr, Byte>();

                    //Reset the region of image back to whole image
                    image.ROI = Rectangle.Empty;

                    //Draw rectangle for each face detected
                    image.Draw(face.rect, new Bgr(0, 0, 0), 1);

                    if (counter > 0)
                    {
                        image.Draw(hardHat.rect, new Bgr(255, 0, 0), 2);
                    }
                }
                return image;
            }
            catch(Exception ex){
                Console.Out.WriteLine("Error in detectHardHar(): " + ex.Message);
            }
            return myImage;
        }
开发者ID:bajracha,项目名称:hardhatdetect,代码行数:85,代码来源:MainForm.cs

示例9: GetWhiteBlackImage

 private Image<Bgr, Byte> GetWhiteBlackImage(Image<Bgr, byte> img, ushort threshold )
 {
     Image<Bgr, Byte> whiteBlackImg = img.CopyBlank();
     for (int y = 0; y < img.Width; y++)
     {
         for (int x = 0; x < img.Height; x++)
         {
             Bgr color = img[x, y];
             if (((int)GetDistanceToWhite(color)) < threshold)
             {
                 whiteBlackImg[x, y] = new Bgr(Color.Black);
             }
             else
             {
                 whiteBlackImg[x, y] = new Bgr(Color.White);
             }
         }
     }
     return whiteBlackImg;
 }
开发者ID:theone4ever,项目名称:PCPS,代码行数:20,代码来源:ObjectDetector.cs

示例10: PerformShapeDetection

      public void PerformShapeDetection()
      {
         if (fileNameTextBox.Text != String.Empty)
         {
            //Load the image from file and resize it for display
            Image<Bgr, Byte> img = 
               new Image<Bgr, byte>(fileNameTextBox.Text)
               .Resize(400, 400, Emgu.CV.CvEnum.INTER.CV_INTER_LINEAR, true);

            //Convert the image to grayscale and filter out the noise
            Image<Gray, Byte> gray = img.Convert<Gray, Byte>().PyrDown().PyrUp();

            Gray cannyThreshold = new Gray(180);
            Gray cannyThresholdLinking = new Gray(120);
            Gray circleAccumulatorThreshold = new Gray(500);

            CircleF[] circles = gray.HoughCircles(
                cannyThreshold,
                circleAccumulatorThreshold,
                4.0, //Resolution of the accumulator used to detect centers of the circles
                15.0, //min distance 
                5, //min radius
                0 //max radius
                )[0]; //Get the circles from the first channel

            Image<Gray, Byte> cannyEdges = gray.Canny(cannyThreshold, cannyThresholdLinking);
            LineSegment2D[] lines = cannyEdges.HoughLinesBinary(
                1, //Distance resolution in pixel-related units
                Math.PI / 45.0, //Angle resolution measured in radians.
                20, //threshold
                30, //min Line width
                10 //gap between lines
                )[0]; //Get the lines from the first channel

            #region Find triangles and rectangles
            List<Triangle2DF> triangleList = new List<Triangle2DF>();
            List<MCvBox2D> boxList = new List<MCvBox2D>(); //a box is a rotated rectangle

            using (MemStorage storage = new MemStorage()) //allocate storage for contour approximation
               for (
                  Contour<Point> contours = cannyEdges.FindContours(
                     Emgu.CV.CvEnum.CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE,
                     Emgu.CV.CvEnum.RETR_TYPE.CV_RETR_LIST,
                     storage);
                  contours != null;
                  contours = contours.HNext)
               {
                  Contour<Point> currentContour = contours.ApproxPoly(contours.Perimeter * 0.05, storage);

                  if (currentContour.Area > 250) //only consider contours with area greater than 250
                  {
                     if (currentContour.Total == 3) //The contour has 3 vertices, it is a triangle
                     {
                        Point[] pts = currentContour.ToArray();
                        triangleList.Add(new Triangle2DF(
                           pts[0],
                           pts[1],
                           pts[2]
                           ));
                     }
                     else if (currentContour.Total == 4) //The contour has 4 vertices.
                     {
                        #region determine if all the angles in the contour are within [80, 100] degree
                        bool isRectangle = true;
                        Point[] pts = currentContour.ToArray();
                        LineSegment2D[] edges = PointCollection.PolyLine(pts, true);

                        for (int i = 0; i < edges.Length; i++)
                        {
                           double angle = Math.Abs(
                              edges[(i + 1) % edges.Length].GetExteriorAngleDegree(edges[i]));
                           if (angle < 80 || angle > 100)
                           {
                              isRectangle = false;
                              break;
                           }
                        }
                        #endregion

                        if (isRectangle) boxList.Add(currentContour.GetMinAreaRect());
                     }
                  }
               }
            #endregion

            originalImageBox.Image = img;

            #region draw triangles and rectangles
            Image<Bgr, Byte> triangleRectangleImage = img.CopyBlank();
            foreach (Triangle2DF triangle in triangleList)
               triangleRectangleImage.Draw(triangle, new Bgr(Color.DarkBlue), 2);
            foreach (MCvBox2D box in boxList)
               triangleRectangleImage.Draw(box, new Bgr(Color.DarkOrange), 2);
            triangleRectangleImageBox.Image = triangleRectangleImage;
            #endregion

            #region draw circles
            Image<Bgr, Byte> circleImage = img.CopyBlank();
            foreach (CircleF circle in circles)
               circleImage.Draw(circle, new Bgr(Color.Brown), 2);
//.........这里部分代码省略.........
开发者ID:Rustemt,项目名称:emgu_openCV,代码行数:101,代码来源:MainForm.cs

示例11: FindCirclesAndLinesWithHough

        public static Bitmap FindCirclesAndLinesWithHough(Image<Bgr, byte> source)
        {
            frameBgr = source;

            frameGray = frameBgr[0]
                .PyrDown()
                .Dilate(2)
                .Erode(2)
                .ThresholdBinary(VideoParameters.Default.GrayFrameThresholdLow, VideoParameters.Default.GrayFrameThresholdHigh)
                .PyrUp();

            frameCanny = HoughTransform.GetCanny(frameGray);

            var blackGray = new Gray(0);
            var blackBgr = new Bgr(Color.Black);
            frameCanny.SetValue(blackGray, RobotMask);

            var lines = HoughTransform.GetLines(frameCanny);
            Lines = lines;

            var height = VisionData.FrameSize.Height;
            foreach (var line in lines)
            {
                if (line.Length < 10 /*&& IsLineWhite(frameBgr, line)*/)
                    continue;

                var polygon = new[]
                {
                    new Point(line.P1.X, line.P1.Y + 5),
                    new Point(line.P1.X, 0),
                    new Point(line.P2.X, 0),
                    new Point(line.P2.X, line.P2.Y + 5)
                };
                /*
                var newLine = GetEdgeLine(line.P1, line.P2);
                var polygon = new[]
                {
                    new Point(newLine.P1.X, newLine.P1.Y),
                    new Point(newLine.P1.X, newLine.P1.Y - height),
                    new Point(newLine.P2.X, newLine.P2.Y - height),
                    new Point(newLine.P2.X, newLine.P2.Y)
                };
                 */

                frameCanny.FillConvexPoly(polygon, blackGray);
                frameBgr.FillConvexPoly(polygon, blackBgr);
                //frameCanny.Draw(line, new Gray(0), 5);
            }

            //Lines = HoughTransform.FilterLines(lines);
            Circles = HoughTransform.GetCircles(frameCanny.Bitmap);

            //var points = EdgeFinder.GetTopArea(blue, lines);
            //canny.FillConvexPoly(points.ToArray(), new Gray(155));

            //var contours = EdgeFinder.GetContours(canny);
            //foreach (var contour in contours)
            //	canny.FillConvexPoly(contour.ToArray(), new Gray(150));

            // HACK: Testing))
            switch (channel)
            {
                default:
                case 1:
                    return frameBgr.Bitmap;
                case 2:
                    return frameGray.Convert<Bgr, byte>().Bitmap;
                case 3:
                    return frameCanny.Convert<Bgr, byte>().Bitmap;
                case 4:
                    return new Image<Bgr, byte>(HoughTransform.CircleTransformation.ToBitmap()).Bitmap;
                case 5:
                    return frameBgr.CopyBlank().Bitmap;
                case 6:
                    var frame = frameBgr.InRange(
                        new Bgr(0, 0, 50),
                        new Bgr(VideoParameters.Default.RedThresholdBlue, VideoParameters.Default.RedThresholdGreen, VideoParameters.Default.RedThresholdRed));
                    return frame
                        .Dilate(3).Erode(6).Dilate(3)
                        .Convert<Bgr, byte>().Bitmap;
                case 7:
                    var frame2 = frameBgr.InRange(
                        new Bgr(50, 0, 0),
                        new Bgr(VideoParameters.Default.BlueThresholdBlue, VideoParameters.Default.BlueThresholdGreen, VideoParameters.Default.BlueThresholdRed));
                    return frame2
                        .Dilate(3).Erode(6).Dilate(3)
                        .Convert<Bgr, byte>().Bitmap;
                case 8:
                    var rectanglesRed = FindRedGoalRectangles();
                    var i = 1;
                    foreach (var rectangle in rectanglesRed.OrderBy(x => x.Size.Width))
                    {
                        frameBgr.Draw(rectangle, new Bgr(Color.Red), 3);
                        frameBgr.Draw(i.ToString(), ref Font, rectangle.Location + new Size(10, 10), new Bgr(Color.DarkRed));
                    }

                    var rectanglesBlue = FindBlueGoalRectangles();
                    i = 1;
                    foreach (var rectangle in rectanglesBlue.OrderBy(x => x.Size.Width))
                    {
//.........这里部分代码省略.........
开发者ID:martikaljuve,项目名称:Robin,代码行数:101,代码来源:VisionExperiments.cs

示例12: process

        /// <summary>
        /// Find the wheels and run the rest of code.
        /// </summary>
        /// <param name="imgToPro"></param>
        /// <param name="imgToDrawOn"></param>
        /// <param name="isRealTime"></param>
        /// <returns></returns>
        public Image<Gray, Byte> process(Image<Gray, Byte> imgToPro, Image<Bgr,Byte> imgToDrawOn,bool isRealTime, String repairSubject)
        {
            // Detects the circles using the HoughCircles algorithm.
            // The important parameters are
            // Circle accumulator threshold
            double cannyThreshold = 200;
            double circleAccumulatorThreshold =300;
            double resolutionOfAccumulator = 2.0;
            double minDist = 500;//300;
            int minRadius = 150;
            int maxRadius = 300;
            timer1--;
            if (isRealTime)
            {
                minRadius = 50;
            }

            imgToPro.SmoothGaussian(333);
            // Take 2 smaller pieces of the picture and test that on them
            Rectangle rect = new Rectangle(0, 0+(this.Height/3), this.Width, this.Height - this.Height/3 );
            imgToPro.ROI = rect;
            imgToDrawOn.ROI = rect;
            // Type avg = imgToPro.GetAverage(imgToPro);

                // The following is done for the sake of speed.
                // Since the wheels should be on the bottom part of the image,
                // then 1/4 of the picture height should be the maximum radius.
                maxRadius = rect.Height / 2;
                // minRadius = rect.Width/ 10;

            double[] valuesToTest = new double[] { 1,1.25,1.5,1.75, 2,2.5, 3, 4, 5, 6,7,8,9,10 };

            // The minimum radius is
            List<CircleF[]> circles = new List<CircleF[]>();
            List<PointF> centers = new List<PointF>();

            foreach (int i in valuesToTest)
            {
                circleAccumulatorThreshold = rect.Width / i +1;
                circles.Add(imgToPro.HoughCircles(new Gray(cannyThreshold), new Gray(circleAccumulatorThreshold), resolutionOfAccumulator, minDist, minRadius, maxRadius)[0]);
                //Console.WriteLine(circles);
            }

            List<CircleF> circlesList = new List<CircleF>();
            int radInt = 0;
            // Draws point on the circles where the rays are
            // We are working in a two dimensional array [][].
            Image<Gray, Byte> circleImage = imgToPro.CopyBlank();
            Point centerOfWheel = new Point();
            for (int i = 0; i < circles.Count; i++)
            {
                for(int z = 0; z < circles[i].Length; z++)
                {
                    circlesList.Add(circles[i][z]);
                    //CircleF
                    PointF cpoint = circles[i][z].Center;
                   centers.Add(cpoint);
                   float rad = circles[i][z].Radius;
                   radInt = Convert.ToInt32(rad);
                    if (centers.Count > 2) break;
                   // Console.WriteLine(circles[i][z]);
                }
            }
            // Distance between the wheels
            double length = 0;
            // Connect the two points
            if (centers.Count > 2)
            {
                float startX = centers[0].X;
                float startY = centers[0].Y;
                float endX = centers[1].X;
                float endY = centers[1].Y;
                Point start = new Point((int)startX, (int)startY);
                Point end = new Point((int)endX, (int)endY);
                length = new LineSegment2DF(start, end).Length;

            }
            if (isRealTime)
            {

                // if the bike is found
                if (timer1 > 0)
                {
                    // draw the last bike
                    if (this.centers != null)
                    {
                        circleImage = drawEverything(this.centers, imgToPro, this.centerofwheel, imgToDrawOn, this.circleslist, this.length, radInt);
                    }
                }
                else
                {
                    // draw the new found bike
                    if (isBikeFound(length, imgToPro))
//.........这里部分代码省略.........
开发者ID:konstantin-hadzhiev,项目名称:BikesIPV,代码行数:101,代码来源:BikeIPV.cs

示例13: TestContour

        public void TestContour()
        {
            Image<Gray, Byte> img = new Image<Gray, byte>("stuff.jpg");
             img.SmoothGaussian(3);
             img = img.Canny(new Gray(80), new Gray(50));
             Image<Gray, Byte> res = img.CopyBlank();
             res.SetValue(255);

             Contour<Point> contour = img.FindContours();

             while (contour != null)
             {
            Contour<Point> approx = contour.ApproxPoly(contour.Perimeter * 0.05);

            if (approx.Convex && approx.Area > 20.0)
            {
               Point[] vertices = approx.ToArray();

               LineSegment2D[] edges = PointCollection.PolyLine(vertices, true);

               res.DrawPolyline(vertices, true, new Gray(200), 1);
            }
            contour = contour.HNext;
             }
        }
开发者ID:samuto,项目名称:UnityOpenCV,代码行数:25,代码来源:AutoTestImage.cs


注:本文中的Image.CopyBlank方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。