本文整理汇总了C#中Image.GetSubRect方法的典型用法代码示例。如果您正苦于以下问题:C# Image.GetSubRect方法的具体用法?C# Image.GetSubRect怎么用?C# Image.GetSubRect使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Image
的用法示例。
在下文中一共展示了Image.GetSubRect方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Detect
public static void Detect(Image<Bgr, Byte> image, String faceFileName, List<Rectangle> recFaces, List<Image<Bgr, Byte>> imgFaces, out long detectionTime)
{
Stopwatch watch;
{
//Read the HaarCascade objects
using (CascadeClassifier faceClassifier = new CascadeClassifier(faceFileName))
{
watch = Stopwatch.StartNew();
using (Image<Gray, Byte> gray = image.Convert<Gray, Byte>()) //Convert it to Grayscale
{
//Normalizes brightness and increases contrast of the image
gray._EqualizeHist();
//Detect the faces from the gray scale image and store the locations as rectangle
//The first dimensional is the channel
//The second dimension is the index of the rectangle in the specific channel
Rectangle[] facesDetected = faceClassifier.DetectMultiScale(
gray,
1.1,
10,
new Size(20, 20),
Size.Empty);
recFaces.AddRange(facesDetected);
//Now for each rectangle, get the sub face image from the coordinates and store it for display later
foreach (Rectangle rec in facesDetected)
imgFaces.Add(image.GetSubRect(rec));
}
watch.Stop();
}
}
detectionTime = watch.ElapsedMilliseconds;
}
示例2: IsMouthDetected
/// <summary>
/// This method detect true if we found a mouth in the image
/// NOTE: The idea is to transform this method in true, when the user is speaking (mouth open)
/// </summary>
/// <param name="face"></param>
/// <returns></returns>
public bool IsMouthDetected(Image<Gray, byte> face)
{
var detectRectangle = new Rectangle(0, face.Height * 2 / 3, face.Width, face.Height / 3);
var whereMouthShouldBe = face.GetSubRect(detectRectangle);
var mouths = Mouth.Detect(whereMouthShouldBe, 1.2, 10, HAAR_DETECTION_TYPE.DO_CANNY_PRUNING, new Size(5, 5));
return mouths.Any();
}
示例3: Split
public Image<Gray, byte>[] Split(Image<Gray, byte> src)
{
var dst = new Image<Gray, byte>[SplitCount];
int width = src.Width / SplitCount;
for (int i = 0; i < SplitCount; ++i) {
var rect = new Rectangle(i * width, 0, width, src.Height);
dst[i] = src.GetSubRect(rect);
}
return dst;
}
示例4: GoodFeaturesToTrack
/// <summary>
/// Searches the image for the good features to track.
/// <para>For each location a Hessian matrix is made and min eig-value is compared against threshold.</para>
/// </summary>
/// <param name="image">Image.</param>
/// <param name="winSize">Window size.</param>
/// <param name="minEigVal">Minimum eigen value.</param>
/// <param name="minimalDistance">Minimum distance from two features.</param>
/// <returns>List of locations that have eigen value larger than <paramref name="minEigVal"/>.</returns>
public static List<Point> GoodFeaturesToTrack(this Image<Gray, float> image, int winSize = 10, float minEigVal = 0.3f, float minimalDistance = 3)
{
var strengthImg = new Image<Gray, float>(image.Size);
var Dx = image.Sobel(1, 0, 3);
var Dy = image.Sobel(0, 1, 3);
var Dxx = Dx.Mul(Dx).MakeIntegral();
var Dxy = Dx.Mul(Dy).MakeIntegral();
var Dyy = Dy.Mul(Dy).MakeIntegral();
var proc = new ParallelProcessor<bool, bool>(image.Size,
() => true,
(_, __, area) =>
{
Rectangle srcArea = new Rectangle
{
X = 0,
Y = area.Y,
Width = image.Width,
Height = area.Height + winSize
};
srcArea.Intersect(new Rectangle(new Point(), image.Size));
goodFeaturesToTrack(Dxx.GetSubRect(srcArea), Dxy.GetSubRect(srcArea), Dyy.GetSubRect(area),
winSize, minEigVal, strengthImg.GetSubRect(srcArea));
},
new ParallelOptions2D { /*ForceSequential = true*/ },
winSize);
proc.Process(true);
var filteredStrengthImg = strengthImg.SupressNonMaxima();
//var filteredStrengthImg = strengthImg;
List<float> values;
var locations = filteredStrengthImg.FindNonZero(out values);
var sortedFeatures = locations.Zip(values, (f, s) => new { f, s })
.OrderByDescending(x => x.s)
.Select(x => x.f)
.ToList();
sortedFeatures = sortedFeatures.EnforceMinimalDistance(minimalDistance);
return sortedFeatures;
}
示例5: GetImage
public Image<Bgra, byte> GetImage(string text)
{
var textCharacters = text.Select(l => _characters.First(c => c.Character == l)).ToList();
var image = new Image<Bgra, byte>(
1 + textCharacters.Sum(c => Math.Max(c.Width, c.Rectangle.Width)) + textCharacters.Sum(c => c.Offset.X),
textCharacters.Max(c => c.Rectangle.Height) + textCharacters.Max(c => c.Offset.Y),
new Bgra(228, 227, 201, 255));
int x = 1;
foreach (var character in textCharacters)
{
if (character.Character == ' ')
{
x += character.Width;
continue;
}
var targetRect = new Rectangle(
x - character.Offset.X,
character.Offset.Y,
character.Rectangle.Width,
character.Rectangle.Height);
var mask = Bitmap.Copy(character.Rectangle).Convert<Gray, byte>();
var characterImage = new Image<Bgra, byte>(mask.Width, mask.Height);
for (int cy = 0; cy < characterImage.Height; cy++)
{
for (int cx = 0; cx < characterImage.Width; cx++)
{
var alpha = mask[cy, cx].Intensity / 253;
characterImage[cy, cx] = new Bgra(
101 * alpha + (228 * (1 - alpha)),
32 * alpha + (227 * (1 - alpha)),
21 * alpha + (201 * (1 - alpha)),
255);
}
}
characterImage.CopyTo(image.GetSubRect(targetRect));
x += character.Width;
}
return image;
}
示例6: IfAnyChanges
public static bool IfAnyChanges(SaperCell[,] table, Rectangle rect, int y, int x)
{
//получает текущую диспозицию, исходя из окна
var gameBmp = Form1.GetScreenImage(rect);
Image<Bgr, Byte> img = new Image<Bgr, byte>(gameBmp);
InitiateCellsWin7();
var cell = img.GetSubRect(new Rectangle(FIRST_WINDOW_X7 + x * (WINDOW_WIDTH7 + WINDOW_DIST7),
FIRST_WINDOW_Y7 + y * (WINDOW_WIDTH7 + WINDOW_DIST7), WINDOW_WIDTH7, WINDOW_HEIGHT7));
int value = CellRecognitionWin7(cell);
if (table[y, x].value != value)
return true;
return false;
}
示例7: IfGameOverWin7
public static bool IfGameOverWin7(Image<Bgr, Byte> image)
{
int sum = 0;
for (int i = 2; i < 12; ++i)
for (int j = 4; j < 25; ++j)
{
var cell = image.GetSubRect(new Rectangle(FIRST_WINDOW_X7 + j * (WINDOW_WIDTH7 + WINDOW_DIST7),
FIRST_WINDOW_Y7 + i * (WINDOW_WIDTH7 + WINDOW_DIST7), WINDOW_WIDTH7, WINDOW_HEIGHT7));
if (CellRecognitionWin7(cell) != -1)
{
sum++;
}
}
if (sum < 100)
{
return true;
}
return false;
}
示例8: CreateImage
public Image<Bgr, Byte> CreateImage(int[] radii, Bitmap shipsFile)
{
if (radii.Count() != 8)
throw new ArgumentException();
;
var source = new Image<Bgr, Byte>(shipsFile);
int tileHeight = source.Height / (8 * 4); // 8 ships, 4 rows per ship
int tileWidth = source.Width / 10; // 10 angles per row
int max_radius = radii.Max()+1;
var target = new Image<Bgr, Byte>(2*max_radius * 10, 2*max_radius * 8 * 4, new Bgr(Color.Black));
for (int row_idx = 0; row_idx < 8 * 4; row_idx++)
{
int shipIndex = row_idx / 4;
for (int col_idx = 0; col_idx < 10; col_idx++)
{
Image<Bgr, Byte> subImage = source.GetSubRect(new Rectangle(new Point(col_idx * tileWidth, row_idx * tileHeight), new Size(tileWidth, tileHeight)));
target.ROI = new Rectangle(new Point(col_idx * (2 * max_radius) + (max_radius - tileWidth / 2), row_idx * (2 * max_radius) + (max_radius - tileHeight / 2)), new Size(subImage.Width, subImage.Height));
target.AddWeighted(subImage, 0, 1, 0).Copy(target, new Image<Gray, Byte>(target.Width, target.Height, new Gray(1)));
target.ROI = new Rectangle(new Point(col_idx * (2 * max_radius), row_idx * (2 * max_radius)), new Size(2*max_radius, 2*max_radius));
target.Draw(new Rectangle(new Point(max_radius - radii[shipIndex], max_radius - radii[shipIndex]), new Size(radii[shipIndex]*2, radii[shipIndex]*2)), new Bgr(Color.White), 1);
target.ROI = Rectangle.Empty;
}
}
return target;
}
示例9: CropImage
/// <summary>
/// crops image to wanted size
/// </summary>
/// <param name="src">
/// image that will be croped
/// </param>
/// <param name="x">
/// The starting X location
/// </param>
/// <param name="y">
/// Starting Y location
/// </param>
/// <param name="width">
/// How wide we want to crop from origin that we set
/// </param>
/// <param name="height">
/// How high we want to crop from origin that we set
/// </param>
/// <returns>
/// returns croped image
/// </returns>
protected Image<Bgr, Byte> CropImage(Image<Bgr, Byte> src, int x, int y, int width, int height)
{
Rectangle rect = new Rectangle();
rect.X = x;
rect.Y = y;
rect.Width = width;
rect.Height = height;
if (x < 0)
{
rect.X = 0;
}
else if (x > src.Cols)
{
rect.X = src.Cols;
}
if (y < 0)
{
rect.Y = 0;
}
else if (y > src.Rows)
{
rect.Y = src.Rows;
}
if ((rect.X + width) > src.Cols)
{
rect.Width = src.Cols - rect.X;
}
if ((rect.Y + height) > src.Rows)
{
rect.Height = src.Rows - rect.Y;
}
return src.GetSubRect(rect).Clone();
}
示例10: ImageToMatrix
//функция распознает картинку и заполняет поле сапера числами
private void ImageToMatrix(Image<Bgr, Byte> image, int[,] tableOfNumbers)
{
for (int i = 0; i < 16; ++i)
for (int j = 0; j < 30; ++j)
{
if(tableOfNumbers[i,j] == 9)
{
var cell = image.GetSubRect(new Rectangle(FIRST_WINDOW_X7 + j * (WINDOW_WIDTH7 + WINDOW_DIST7),
FIRST_WINDOW_Y7 + i * (WINDOW_WIDTH7 + WINDOW_DIST7), WINDOW_WIDTH7, WINDOW_HEIGHT7));
saperField[i, j] = CellRecognitionWin7(cell);
}
else
{
saperField[i, j] = tableOfNumbers[i, j];
}
}
}
示例11: button10_Click
//.........这里部分代码省略.........
var.ROI = new Rectangle(j, i, size, size);
//Sets the region of interest of the image to the abpve by which the image is treated just as that rectangle and nothing else
Bitmap smallbox = var.ToBitmap();
Image<Bgr, float> ismallbox = new Image<Bgr, float>(smallbox);
channels = tochange.Split();
for (int k = 0; k < channels.Length; k++)
{
max = 0;
amin = 300;
for (int a = 0; a < ismallbox.Height; a++)
{
for (int b = 0; b < ismallbox.Width; b++)
{
if ((int)ismallbox.Data[a, b, k] > max)
{
max = (int)ismallbox.Data[a, b, k];
}
if ((int)ismallbox.Data[a, b, k] < amin)
{
amin = (int)ismallbox.Data[a, b, k];
}
}
}
CvInvoke.cvNormalize(channels[k], channels[k], amin, max, Emgu.CV.CvEnum.NORM_TYPE.CV_MINMAX, IntPtr.Zero);
}
Image<Bgr, Byte> n = new Image<Bgr, byte>(channels);
resized = new Bitmap(n.Bitmap, size, size); //Resize file
var.ROI = roi;
{
Image<Bgr, Byte> temp = new Image<Bgr, byte>(resized);
temp.CopyTo(Mosaic.GetSubRect(new Rectangle(j, i, size, size)));
}
}
imageBox2.Image = Mosaic;
imageBox2.Show();
}
//Single nonmixed done.
else
{
progressBar2.Value = 0;
double min = 10000;
int index = 10000;
for (int i = 0; i < (grayvar.Height); i += size)
for (int j = 0; j < grayvar.Width; j += size)
{
Rectangle roi = var.ROI;
var.ROI = new Rectangle(j, i, size, size);
//Sets the region of interest of the image to the abpve by which the image is treated just as that rectangle and nothing else
Bitmap smallbox = var.ToBitmap();
double brightnesshere = avgBrightness(smallbox); //this is storing the avg brightness of the small grid
double sDev = standardDeviation(brightnesshere, smallbox);
Color here = getDominantColor(smallbox);
min = 100000;
progressBar2.Value++;
for (int k = 0; k < total - 2; k++)
{
示例12: Update
internal void Update(Image<Bgr, byte> image)
{
Image<Gray, byte> threshImage;
bool pointObserved = false;
// Try looking in local window
if (Pos != Point.Empty)
{
int width = 120;
int height = 60;
int x = Math.Max(1, (int)Pos.X - (width / 2));
int y = Math.Max(1, (int)Pos.Y - (height / 2));
if (x +width > image.Width) width = image.Width - x-1;
if (y + height > image.Height ) height = image.Height - y-1;
if (x < 0 || x + width > image.Width || y < 0 || y + height > image.Height
|| width < 1 || height < 1)
{
goto notGoodSearch;
}
Image<Bgr, byte> searchWindow = image.GetSubRect(new Rectangle(x, y, width, height));
threshImage = ImageProcess.ThresholdHsv(searchWindow, 14, 37, 150, 256, 98, 256);
PointF searchPos = ImageProcess.GetCentreOfMass(threshImage.Erode(1).Dilate(1).Erode(1), 4);
if (searchPos != Point.Empty)
{
pointObserved = true;
Pos = new PointF(x + searchPos.X, y + searchPos.Y);
}
}
notGoodSearch:
if (Pos == Point.Empty || pointObserved == false) // If window fails to find point, then search the whole image
{
threshImage = ImageProcess.ThresholdHsv(image, 17, 34, 150, 256, 98, 256);
PointF searchPos = ImageProcess.GetCentreOfMass(threshImage.Erode(2).Dilate(1).Erode(1), 6);
if (searchPos != Point.Empty)
{
pointObserved = true;
Pos = searchPos;
}
}
Matrix<float> prediction = m_KalmanFilter.Predict();
Matrix<float> measured = new Matrix<float>(new float[,] { { Pos.X }, { Pos.Y } });
if (pointObserved)
{
Matrix<float> estimated = m_KalmanFilter.Correct(measured);
Pos = new PointF(estimated[0, 0], estimated[1, 0]);
}
else
{
Pos = new PointF(prediction[0, 0], prediction[1, 0]);
}
if (Pos.X < 1) Pos.X = 1;
if (Pos.Y < 1) Pos.Y = 1;
if (Pos.X > 1279) Pos.X = 1279;
if (Pos.Y > 719) Pos.Y = 719;
}
示例13: ClassifyGem
public Gem ClassifyGem(Image<Bgr, byte> gemSlotImage)
{
if(gemSlotImage.Bitmap.Width != 40 || gemSlotImage.Bitmap.Height != 40)
throw new Exception("only 40x40 gem slots are accepted");
Image<Bgr, byte> centerPart = gemSlotImage.GetSubRect(new Rectangle(10, 10, 20, 20));
Bgr sum = centerPart.GetSum();
int pixels = gemSlotImage.Bitmap.Width*gemSlotImage.Bitmap.Height;
Bgr averageBgr = new Bgr(sum.Blue/pixels, sum.Green/pixels, sum.Red/pixels);
double smallestDistance = double.MaxValue;
GemColor color = GemColor.Unknown;
double blueDistance = Distance(averageBgr, BlueGemBgr);
if(blueDistance < smallestDistance)
{
smallestDistance = blueDistance;
color = GemColor.Blue;
}
double greenDistance = Distance(averageBgr, GreenGemBgr);
if(greenDistance < smallestDistance)
{
smallestDistance = greenDistance;
color = GemColor.Green;
}
double orangeDistance = Distance(averageBgr, OrangeGemBgr);
if(orangeDistance < smallestDistance)
{
smallestDistance = orangeDistance;
color = GemColor.Orange;
}
double redDistance = Distance(averageBgr, RedGemBgr);
if(redDistance < smallestDistance)
{
smallestDistance = redDistance;
color = GemColor.Red;
}
double violetDistance = Distance(averageBgr, VioletGemBgr);
if(violetDistance < smallestDistance)
{
smallestDistance = violetDistance;
color = GemColor.Violet;
}
double whiteDistance = Distance(averageBgr, WhiteGemBgr);
if(whiteDistance < smallestDistance)
{
smallestDistance = whiteDistance;
color = GemColor.White;
}
double yellowDistance = Distance(averageBgr, YellowGemBgr);
if(yellowDistance < smallestDistance)
{
smallestDistance = yellowDistance;
color = GemColor.Yellow;
}
if (smallestDistance >= 20.0)
{
Debug.WriteLine("------");
Debug.WriteLine("Average BGR:{0}", averageBgr);
Debug.WriteLine("Distances");
Debug.WriteLine("Blue:{0}", blueDistance);
Debug.WriteLine("Green:{0}", greenDistance);
Debug.WriteLine("Orange:{0}", orangeDistance);
Debug.WriteLine("Red:{0}", redDistance);
Debug.WriteLine("Violet:{0}", violetDistance);
Debug.WriteLine("White:{0}", whiteDistance);
Debug.WriteLine("Yellow:{0}", yellowDistance);
return new Gem(GemColor.Unknown, GemType.Unknown);
}
return new Gem(color, GemType.Normal);
}
示例14: Main
static void Main(string[] args)
{
String apiKey = "847e6315f892e21449da5f4077c5104f";
String apiSecret = "BmskojfFyrZVQhkLfNSnRzX-lK8musO6";
FaceService faceService = new FaceService(apiKey, apiSecret);
string filePath = "D:\\Codes\\datasets\\face_morph\\bbt.jpg";
DetectResult detectResult = faceService.Detection_DetectImg(filePath);
Image<Bgr, Byte> srcImg = new Image<Bgr, Byte>(filePath);
for(int cnt=0; cnt < detectResult.face.Count; cnt++)
{
string pointFileName = String.Format("D:\\Codes\\datasets\\face_morph\\result_bbt_face_{0}.txt", cnt);
FileStream fileStream = new FileStream(pointFileName, FileMode.Create);
StreamWriter streamWriter = new StreamWriter(fileStream);
Rectangle faceRect = new Rectangle(
(int)(detectResult.face[cnt].position.center.x * srcImg.Width /100 - detectResult.face[cnt].position.width * srcImg.Width * 0.5 / 100),
(int)(detectResult.face[cnt].position.center.y * srcImg.Height / 100 - detectResult.face[cnt].position.height * srcImg.Height * 0.5 / 100),
(int)detectResult.face[cnt].position.width * srcImg.Width / 100,
(int)detectResult.face[cnt].position.height * srcImg.Height / 100);
Image<Bgr, byte> faceImg = srcImg.GetSubRect(faceRect);
string fileName = String.Format("D:\\Codes\\datasets\\face_morph\\result_bbt_face_{0}.jpg", cnt);
faceImg.Save(fileName);
IList<FaceppSDK.Point> featurePoints = new List<FaceppSDK.Point>();
//featurePoints.Add(detectResult.face[cnt].position.center);
FaceppSDK.Point tempPoint1 = new FaceppSDK.Point();
tempPoint1.x = (detectResult.face[cnt].position.eye_left.x
- detectResult.face[cnt].position.center.x) / detectResult.face[cnt].position.width;
tempPoint1.y = (detectResult.face[cnt].position.eye_left.y
- detectResult.face[cnt].position.center.y) / detectResult.face[cnt].position.height;
featurePoints.Add(tempPoint1);
FaceppSDK.Point tempPoint2 = new FaceppSDK.Point();
tempPoint2.x = (detectResult.face[cnt].position.eye_right.x
- detectResult.face[cnt].position.center.x) / detectResult.face[cnt].position.width;
tempPoint2.y = (detectResult.face[cnt].position.eye_right.y
- detectResult.face[cnt].position.center.y) / detectResult.face[cnt].position.height;
featurePoints.Add(tempPoint2);
FaceppSDK.Point tempPoint3 = new FaceppSDK.Point();
tempPoint3.x = (detectResult.face[cnt].position.mouth_left.x
- detectResult.face[cnt].position.center.x) / detectResult.face[cnt].position.width;
tempPoint3.y = (detectResult.face[cnt].position.mouth_left.y
- detectResult.face[cnt].position.center.y) / detectResult.face[cnt].position.height;
featurePoints.Add(tempPoint3);
FaceppSDK.Point tempPoint4 = new FaceppSDK.Point();
tempPoint4.x = (detectResult.face[cnt].position.mouth_right.x
- detectResult.face[cnt].position.center.x) / detectResult.face[cnt].position.width;
tempPoint4.y = (detectResult.face[cnt].position.mouth_right.y
- detectResult.face[cnt].position.center.y) / detectResult.face[cnt].position.height;
featurePoints.Add(tempPoint4);
FaceppSDK.Point tempPoint5 = new FaceppSDK.Point();
tempPoint5.x = (detectResult.face[cnt].position.nose.x
- detectResult.face[cnt].position.center.x) / detectResult.face[cnt].position.width;
tempPoint5.y = (detectResult.face[cnt].position.nose.y
- detectResult.face[cnt].position.center.y) / detectResult.face[cnt].position.height;
featurePoints.Add(tempPoint5);
foreach (FaceppSDK.Point featurePoint in featurePoints)
{
streamWriter.WriteLine(featurePoint.x.ToString());
streamWriter.WriteLine(featurePoint.y.ToString());
System.Drawing.PointF point = new System.Drawing.PointF((float)featurePoint.x * srcImg.Width / 100,
(float)featurePoint.y * srcImg.Height / 100);
Cross2DF cross = new Cross2DF(point, (float)3.0, (float)3.0);
srcImg.Draw(cross, new Bgr(0, 255, 0), 3);
}
streamWriter.Flush();
streamWriter.Close();
fileStream.Close();
//srcImg.Save("D:\\Codes\\datasets\\face_morph\\result_bbt.jpg");
}
}
示例15: RemoveBackgroundColour
//.........这里部分代码省略.........
}
}
cropY1 = count;
// Bottom Y Crop
for (int y = 0; y < (canvas.Height / 2); y++)
{
for (int x = 0; x < canvas.Width; x += 2)
{
if (Colour.IsColourSimilar(canvas.GetPixel(x, canvas.Height - (y + 1)), BackgroundColour))
{
count = y;
}
else
{
breakLoop = true;
break;
}
}
if (breakLoop)
{
breakLoop = false;
break;
}
}
cropY2 = count;
// Left X Crop
for (int x = 0; x < (canvas.Width / 2); x++)
{
for (int y = 0; y < canvas.Height; y += 2)
{
if (Colour.IsColourSimilar(canvas.GetPixel(x, y), BackgroundColour))
{
count = x;
}
else
{
breakLoop = true;
break;
}
}
if (breakLoop)
{
breakLoop = false;
break;
}
}
cropX1 = count;
// Right X Crop
for (int x = 0; x < (canvas.Width / 2); x++)
{
for (int y = 0; y < canvas.Height; y += 2)
{
if (Colour.IsColourSimilar(canvas.GetPixel(canvas.Width - (x + 1), canvas.Height - (y + 1)), BackgroundColour))
{
count = x;
}
else
{
breakLoop = true;
break;
}
}
if (breakLoop)
{
breakLoop = false;
break;
}
}
cropX2 = count;
Image<Bgr, Byte> newImage = new Image<Bgr, byte>(canvas);
if (cropX1 > 0 || cropX2 < newImage.Width || cropY1 > 0 || cropY2 < newImage.Height)
{
if (cropX1 + cropX2 < newImage.Width && cropY1 + cropY2 < newImage.Height)
{
int x, y, newWidth, newHeight;
x = cropX1;
y = cropY1;
newWidth = newImage.Width - cropX2 - cropX1;
newHeight = newImage.Height - cropY2 - cropY1;
newImage = newImage.GetSubRect(new Rectangle(x, y, newWidth, newHeight));
}
}
return newImage;
}