当前位置: 首页>>代码示例>>C#>>正文


C# Image.SmoothGaussian方法代码示例

本文整理汇总了C#中Image.SmoothGaussian方法的典型用法代码示例。如果您正苦于以下问题:C# Image.SmoothGaussian方法的具体用法?C# Image.SmoothGaussian怎么用?C# Image.SmoothGaussian使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Image的用法示例。


在下文中一共展示了Image.SmoothGaussian方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: ProcessColorImage

        public override Image ProcessColorImage(Bitmap frame, ToteDetectionType detectionType, bool detectBins)
        {
            Image<Bgr, Byte> img = new Image<Bgr, Byte>(frame);

            //// Get The Thresh Image With Given Values
            //Image<Gray, byte> thresh = (threshData as BgrThreshData).InRange(img);
            //// Pixelate Image
            //threshData.Blur(ref thresh);
            //
            //
            //Image ret = base.AnalyzeImage(thresh, detectionType, detectBins);


            //frame.Dispose();
            //thresh.Dispose();

            img = img.SmoothMedian(11);
            img = img.SmoothGaussian(11);
            img = img.Erode(15);
            img = img.Dilate(10);

            // Try this: img.HoughCircles();

            Image<Gray, byte> thresh = img.InRange(new Bgr(110, 130, 100), new Bgr(164, 166, 181));
            Contour<Point> countor = thresh.FindContours(Emgu.CV.CvEnum.CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE, Emgu.CV.CvEnum.RETR_TYPE.CV_RETR_LIST);
            List<Contour<Point>> PlayingBalls = new List<Contour<Point>>(); ;
            while (countor != null)
            {
                // filter countors
                // convex hull countors
                if (countor.Area > 50)
                    PlayingBalls.Add(countor);
                   
                countor = countor.HNext;
            }
            float resolutionOffset = ((float)thresh.Width * thresh.Height) / (640.0f * 480.0f);


            foreach (Contour<Point> ball in PlayingBalls)
            {
                
                img.Draw(ball, new Bgr(255, 0, 0), (int)Math.Ceiling(3.0f));
                // draw left countors and their min enclosing circle (draw on img)
            }
          



            Image ret = img.ToBitmap();
            img.Dispose();
            return ret;
        }
开发者ID:GreenBlitz4590Programmers,项目名称:StrongHoldVision,代码行数:52,代码来源:ImageProcessor.cs

示例2: DetectStopSign

 public void DetectStopSign(Image<Bgr, byte> img, List<Image<Gray, Byte>> stopSignList, List<Rectangle> boxList)
 {
     Image<Bgr, Byte> smoothImg = img.SmoothGaussian(5, 5, 1.5, 1.5);
      Image<Gray, Byte> smoothedRedMask = GetRedPixelMask(smoothImg);
      smoothedRedMask._Dilate(1);
      smoothedRedMask._Erode(1);
      using (Image<Gray, Byte> canny = smoothedRedMask.Erode(3).Dilate(3).Canny(new Gray(100), new Gray(50)))
      using (MemStorage stor = new MemStorage())
      {
     Contour<Point> contours = canny.FindContours(
        Emgu.CV.CvEnum.CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE,
        Emgu.CV.CvEnum.RETR_TYPE.CV_RETR_TREE,
        stor);
     FindStopSign(img, stopSignList, boxList, contours);
      }
 }
开发者ID:samuto,项目名称:UnityOpenCV,代码行数:16,代码来源:StopSignDetector.cs

示例3: DetectImage

        public void DetectImage(Image<Gray, byte> img, List<Image<Gray, Byte>> imgList, List<Rectangle> boxList)
        {
            Image<Gray, Byte> smoothImg = img.SmoothGaussian(5, 5, 1.5, 1.5);

            //Use Dilate followed by Erode to eliminate small gaps in some countour.
            smoothImg._Dilate(1);
            smoothImg._Erode(1);

            using (Image<Gray, Byte> canny = smoothImg.Canny(100, 50))
            using (MemStorage stor = new MemStorage())
            {
                Contour<Point> contours = canny.FindContours(
                   Emgu.CV.CvEnum.CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE,
                   Emgu.CV.CvEnum.RETR_TYPE.CV_RETR_TREE,
                   stor);
                FindImage(img, imgList, boxList, contours);
            }
        }
开发者ID:etp-work,项目名称:ThePower,代码行数:18,代码来源:ImageDetector.cs

示例4: GetRegion

        public static Rectangle GetRegion(string[] ColorsToLookFor, Image<Bgr, Byte> Frame)
        {
            ColorClassification ColorClassifier = new ColorClassification();

            // Perform Edge Detection
            Image<Gray, byte> grayFrame = Frame.Convert<Gray, byte>();

            Task<bool[,]> detectEdges = new Task<bool[,]>(() =>
            {
                Image<Gray, Byte> cannyFrame = grayFrame.Canny(100, 60);
                cannyFrame._Dilate(3); // use canny edge detection to determine object outlines
                bool[,] BW_2 = BlobFinder.BW_Converter(cannyFrame);
                return BW_2;
            });

            detectEdges.Start();
            Frame.SmoothGaussian(25);
            var ColorFrame = Frame.Convert<Rgb, float>();
            int[,] SelectedColors = ColorClassifier.SegmentColors(ColorFrame.Data);
            bool[,] BW_FromColor = ColorClassifier.GenerateBW(ref SelectedColors, ColorsToLookFor);
            Image<Gray, byte> BW_GrayImg = BlobFinder.Gray_Converter(ref BW_FromColor);
            BW_GrayImg._Dilate(3);
            BW_FromColor = BlobFinder.BW_Converter(BW_GrayImg);

            // Combine objects found via color recognition and edge detection
            // If an object is found with edge and color keep it, otherwise discard it
            bool[,] EdgeBW = detectEdges.Result;
            bool[,] BW_Composite = BlobFinder.AND(ref BW_FromColor, ref EdgeBW);

            BlobFinder ImageBlobs = new BlobFinder(BW_Composite);
            ImageBlobs.RemoveSmallBlobs(3000);
            Blob bestBlob = ImageBlobs.PickBestBlob();
            Rectangle myRect = new Rectangle();
            if (bestBlob != null)
            {
                myRect = new Rectangle(
                    bestBlob.Xmin,
                    bestBlob.Ymin,
                    bestBlob.Xmax - bestBlob.Xmin + 1,
                    bestBlob.Ymax - bestBlob.Ymin + 1);
            }
            BlobFinder.DrawBlobOutline(Frame.Bitmap, myRect);
            return myRect;
        }
开发者ID:JonHoy,项目名称:Robotic_Arm,代码行数:44,代码来源:ColorObjectRecognizer.cs

示例5: processFrameAndUpdateGUI

        ///////////////////////////////////////////////////////////////////////////////////////////
        void processFrameAndUpdateGUI(object sender, EventArgs arg)
        {
            imgOriginal = capWebcam.QueryFrame();               // get next frame from the webcam

            if (imgOriginal == null)                            // if we did not get a frame
            {                                                   // show error via message box
                MessageBox.Show("unable to read from webcam" + Environment.NewLine + Environment.NewLine +
                                "exiting program");
                Environment.Exit(0);                            // and exit program
            }

            imgBlurredBGR = imgOriginal.SmoothGaussian(5);          // blur

            imgProcessed = imgBlurredBGR.InRange(new Bgr(0, 0, 175), new Bgr(100, 100, 256));       // filter on color

            imgProcessed = imgProcessed.SmoothGaussian(5);          // blur again

            StructuringElementEx structuringElementEx = new StructuringElementEx(5, 5, 1, 1, CV_ELEMENT_SHAPE.CV_SHAPE_RECT);       // declare structuring element to use in dilate and erode

            CvInvoke.cvDilate(imgProcessed, imgProcessed, structuringElementEx, 1);             // close image (dilate, then erode)
            CvInvoke.cvErode(imgProcessed, imgProcessed, structuringElementEx, 1);              // closing "closes" (i.e. fills in) foreground gaps

            CircleF[] circles = imgProcessed.HoughCircles(new Gray(100), new Gray(50), 2, imgProcessed.Height / 4, 10, 400)[0];     // fill variable circles with all circles in the processed image

            foreach (CircleF circle in circles)                     // for each circle
            {
                if (txtXYRadius.Text != "") txtXYRadius.AppendText(Environment.NewLine);        // if we are not on the first line in the text box then insert a new line char

                txtXYRadius.AppendText("ball position = x " + circle.Center.X.ToString().PadLeft(4) +           // print ball position and radius
                                       ", y = " + circle.Center.Y.ToString().PadLeft(4) +                       //
                                       ", radius = " + circle.Radius.ToString("###.000").PadLeft(7));           //

                txtXYRadius.ScrollToCaret();                // scroll down in text box so most recent line added (at the bottom) will be shown

                // draw a small green circle at the center of the detected object
                CvInvoke.cvCircle(imgOriginal, new Point((int)circle.Center.X, (int)circle.Center.Y), 3, new MCvScalar(0, 255, 0), -1, LINE_TYPE.CV_AA, 0);

                imgOriginal.Draw(circle, new Bgr(Color.Red), 3);        // draw a red circle around the detected object
            }
            ibOriginal.Image = imgOriginal;             // update image boxes on form
            ibProcessed.Image = imgProcessed;           //
        }
开发者ID:almar12,项目名称:OpenCV_2.4.11_Windows_Installation_Guide,代码行数:43,代码来源:RedBallTracker.cs

示例6: processFrameAndUpdateGUI

        ///////////////////////////////////////////////////////////////////////////////////////////
        void processFrameAndUpdateGUI(object sender, EventArgs arg)
        {
            imgOriginal = capWebcam.QueryFrame();               // get next frame from the webcam

            if (imgOriginal == null)                            // if we did not get a frame
            {                                                   // show error via message box
                MessageBox.Show("unable to read from webcam" + Environment.NewLine + Environment.NewLine +
                                "exiting program");
                Environment.Exit(0);                            // and exit program
            }
            imgGrayscale = imgOriginal.Convert<Gray, Byte>();       // convert to grayscale
            imgBlurred = imgGrayscale.SmoothGaussian(5);            // blur

            double dblCannyThresh = 150.0;                          // declare params for call to Canny
            double dblCannyThreshLinking = 75.0;                    //

            imgCanny = imgBlurred.Canny(dblCannyThresh, dblCannyThreshLinking);     // get Canny edges

            ibOriginal.Image = imgOriginal;             // update image boxes
            ibCanny.Image = imgCanny;                   //
        }
开发者ID:almar12,项目名称:OpenCV_2.4.11_Windows_Installation_Guide,代码行数:22,代码来源:CannyWebcam.cs

示例7: start

        public int start(Communicator comm)
        {
            int Vote = 0;

            try
            {
                Vote = LoadAndProcessImage(".\\Humerus\\1.bmp",comm);

            }
            catch (Exception ex)
            {
                MessageBox.Show(ex.Message);

            }

            ibImage.SizeMode = PictureBoxSizeMode.Zoom;
            imgGray = imgGray.AddWeighted(imgGray, 1.0, 0.0, 0.0);
            imgGray = imgGray.ThresholdToZero(new Gray(100));
            imgGray = imgGray.SmoothGaussian(9);
            imgGray = imgGray.Canny(0, 80);

            return Vote;
        }
开发者ID:RBChavez,项目名称:HumerusAnalysisParallelComputing,代码行数:23,代码来源:Form1.cs

示例8: LoadAndProcessImage

        public int LoadAndProcessImage(string FileName, Communicator comm)
        {
            int Vote = 0;
            imgOriginal = new Image<Bgr, Byte>(FileName);
            imgGray = imgOriginal.Convert<Gray, Byte>();
            //BitAnalysis.StartDye(0, 0, imgGray.Height, imgGray.Width, imgGray);

            hcHumerus = new HaarCascade(".\\haarHumerus_03112013_4.8_18.xml");
            ibImage.Image = imgBlank;

            acHumerus = hcHumerus.Detect(imgGray,
                        4.8,
                        18,
                        HAAR_DETECTION_TYPE.SCALE_IMAGE,
                        Size.Empty,
                        Size.Empty);
            acHumerus1 = hcHumerus.Detect(imgGray,
                                        4.8,
                                        18,
                                        HAAR_DETECTION_TYPE.DO_CANNY_PRUNING,
                                        Size.Empty,
                                        Size.Empty);

            int count1 = 0, count2 = 0;
            foreach (MCvAvgComp acHum in acHumerus)
            {
                StartDye(acHum.rect.X, acHum.rect.Y, acHum.rect.Width, acHum.rect.Height, imgGray,comm);
                if (Flag)  // to get coordination x,y, and with, high
                {
                    imgOriginal.Draw(acHum.rect, new Bgr(Color.Blue), 2);
                    count1++;
                    Vote = 1;
                }
                imgGray.Draw(acHum.rect, new Gray(0.0), 1);
            }
            if (count1 ==0)
            {
                foreach (MCvAvgComp acHum1 in acHumerus1)
                {
                    StartDye(acHum1.rect.X, acHum1.rect.Y, acHum1.rect.Width, acHum1.rect.Height, imgGray,comm);
                    if (Flag)  // to get coordination x,y, and with, high
                    {
                        imgOriginal.Draw(acHum1.rect, new Bgr(Color.Red), 2);
                        count2++;
                        Vote = 1;
                    }
                    imgGray.Draw(acHum1.rect, new Gray(0.0), 1);
                }
            }
            if (count1 == 0 &&  count2 == 0 )
            {
                imgGray = imgGray.AddWeighted(imgGray, 1.0, 0.0, 0.0);
                imgGray = imgGray.ThresholdToZero(new Gray(100));
                imgGray = imgGray.SmoothGaussian(9);
                imgGray = imgGray.Canny(0, 80);

                hcHumerus = new HaarCascade(".\\HaarHumerus_03172013_2.8_3.xml");

                acHumerus = hcHumerus.Detect(imgGray,
                   2.8,
                   3,
                    HAAR_DETECTION_TYPE.SCALE_IMAGE,
                    Size.Empty,
                    Size.Empty);
                acHumerus1 = hcHumerus.Detect(imgGray,
                    2.8,
                    3,
                    HAAR_DETECTION_TYPE.DO_CANNY_PRUNING,
                    Size.Empty,
                    Size.Empty);
                foreach (MCvAvgComp acHum in acHumerus)
                {
                    StartDye(acHum.rect.X, acHum.rect.Y, acHum.rect.Width, acHum.rect.Height, imgGray,comm);
                    if (Flag)  // to get coordination x,y, and with, high
                    {
                        imgOriginal.Draw(acHum.rect, new Bgr(Color.Orange), 2);
                        Vote = 1;
                    }
                    imgGray.Draw(acHum.rect, new Gray(0.0), 1);
                }
                foreach (MCvAvgComp acHum1 in acHumerus1)
                {
                    StartDye(acHum1.rect.X, acHum1.rect.Y, acHum1.rect.Width, acHum1.rect.Height, imgGray,comm);
                    if (Flag)  // to get coordination x,y, and with, high
                    {
                        imgOriginal.Draw(acHum1.rect, new Bgr(Color.Green), 2);
                        Vote = 1;
                    }
                    imgGray.Draw(acHum1.rect, new Gray(), 1);
                }

            }

            return Vote;
        }
开发者ID:RBChavez,项目名称:HumerusAnalysisParallelComputing,代码行数:95,代码来源:Form1.cs

示例9: DetectRect

        public void DetectRect(Image<Bgr, byte> img, List<Image<Gray, Byte>> stopSignList, List<Rectangle> boxList, List<Contour<Point>> contourSignFound)
        {
            imagecolor = img;
            joinContour.Clear();
            Image<Bgr, Byte> smoothImg = img.SmoothGaussian(5, 5, 1.5, 1.5);
            Image<Gray, Byte> smoothedBlackMask = GetColorPixelMask(smoothImg, 0, 180, 0, 94, 0, 100);
            imageGray = smoothedBlackMask;

            //Use Dilate followed by Erode to eliminate small gaps in some countour.
            smoothedBlackMask._Dilate(1);
            smoothedBlackMask._Erode(1);

            using (Image<Gray, Byte> canny = smoothedBlackMask.Canny(new Gray(100), new Gray(50)))//Canny(100,50))
            using (MemStorage stor = new MemStorage())
            {
                Contour<Point> contours = canny.FindContours(
                   Emgu.CV.CvEnum.CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE,
                   Emgu.CV.CvEnum.RETR_TYPE.CV_RETR_TREE,
                   stor);
                FindRect(img, stopSignList, boxList, contours, 5);
            }
            CvInvoke.cvAnd(imageGray, imageSelector, imageGray, IntPtr.Zero);
            using (Image<Gray, Byte> cannySelector = imageSelector.Canny(new Gray(100), new Gray(50)))//Canny(100,50))
            using (MemStorage stor = new MemStorage())
            {
                Contour<Point> contours = cannySelector.FindContours(
                   Emgu.CV.CvEnum.CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE,
                   Emgu.CV.CvEnum.RETR_TYPE.CV_RETR_TREE,
                   stor);
                imageGray.Draw(contours, new Gray(255), 1);
            }

            
            //imageGray.Draw(joinContour.GetMinAreaRect(),new Gray(180),1);

            CvInvoke.cvShowImage("Image Black", imageGray);
            PointF temp = new PointF();
            MCvBox2D tempbox = new MCvBox2D();
            bool swapped = false;
            //bubble sort for making following sorting
            //   0
            // 1   2
            //   4
            do
            {
                swapped = false;
                for (int i = 0; i < 3; i++)
                {
                    if (pointBlack[i].Y > pointBlack[i + 1].Y)
                    {
                        temp = pointBlack[i];
                        tempbox= minBoxesBlack[i];

                        pointBlack[i] = pointBlack[i + 1];
                        minBoxesBlack[i] = minBoxesBlack[i + 1];

                        pointBlack[i + 1] = temp;
                        minBoxesBlack[i + 1] = tempbox;
                        swapped = true;
                    }
                }
            } while (swapped);

            if (pointBlack[1].X > pointBlack[2].X)
            {
                temp = pointBlack[1];
                tempbox = minBoxesBlack[1];
                pointBlack[1] = pointBlack[2];
                minBoxesBlack[1] = minBoxesBlack[2];
                pointBlack[2] = temp;
                minBoxesBlack[2] = tempbox;
            }
            MCvFont f = new MCvFont(Emgu.CV.CvEnum.FONT.CV_FONT_HERSHEY_PLAIN, 0.8, 0.8);
            //for (int i=0; i < 4; i++)
            //{
            //    imageGray.Draw("    " + i, ref f, new Point((int)pointBlack[i].X, (int)pointBlack[i].Y), new Gray(200));
            //    imageGray.Draw(minBoxesBlack[i], new Gray(100), 2);
            //}
            LineSegment2DF[]lines  = new LineSegment2DF[9];
            

            lines[0] = new LineSegment2DF(pointBlack[0], pointBlack[3]);
            lines[1] = new LineSegment2DF(pointBlack[1], pointBlack[2]);
            lines[2] = translatationLineXNeg(lines[0], lines[1]);
            lines[3] = translatationLineXPos(lines[0], lines[1]);
            
            imageGray.Draw(lines[0], new Gray(100), 2);
            imageGray.Draw(lines[1], new Gray(100), 2);
            imageGray.Draw(lines[2], new Gray(100), 2);
            imageGray.Draw(lines[3], new Gray(100), 2);
            
            //areas.Clear();
            Image<Gray, Byte> smoothedWhiteMask = GetColorPixelMask(smoothImg, 0, 180, 0, 94, 92, 255);
            imageGray = smoothedWhiteMask;

            //Use Dilate followed by Erode to eliminate small gaps in some countour.
            smoothedWhiteMask._Dilate(1);
            smoothedWhiteMask._Erode(1);
            CvInvoke.cvAnd(smoothedWhiteMask, imageSelector, smoothedWhiteMask, IntPtr.Zero);

//.........这里部分代码省略.........
开发者ID:petrind,项目名称:SRTesis2,代码行数:101,代码来源:ShapeDetector.cs

示例10: create_init_img

        private Image<Gray, float> create_init_img(Image<Gray, float> img, int imgDbl, double sigma)
        {
            Image<Gray, float> gray;
            Image<Gray, float> dbl;
            float sigDiff;

            gray = convert_to_gray32(img);
            if (imgDbl != 0)
            {
                sigDiff = (float) Math.Sqrt(sigma*sigma - SiftInitSigma*SiftInitSigma*4);
                dbl = new Image<Gray, float>(new Size(img.Width*2, img.Height*2));
                dbl = gray.Resize(dbl.Width, dbl.Height, INTER.CV_INTER_CUBIC);
                dbl = dbl.SmoothGaussian(0, 0, sigDiff, sigDiff);
                return dbl;
            }
            else
            {
                sigDiff = (float) Math.Sqrt(sigma*sigma - SiftInitSigma*SiftInitSigma);
                gray.SmoothGaussian(0, 0, sigDiff, sigDiff);
                return gray;
            }
        }
开发者ID:6a6kin,项目名称:BSUIRObjRec2015,代码行数:22,代码来源:Sift.cs

示例11: ProcessFrame

        private void ProcessFrame(object sender, EventArgs arg)
        {
            if (null == camera)
                return;
            using (Image<Bgr, Byte> ImageFrame = camera.QueryFrame())  //line 1
            {
                //stream = new MemoryStream();
                if(null != ImageFrame)
                {
                    Image<Gray, Byte> ImageGrey = ImageFrame.Convert<Gray, Byte>().PyrDown().PyrUp();
                    Image<Gray, float> grad_x = new Image<Gray, float>(ImageGrey.Size);
                    Image<Gray, float> grad_y = new Image<Gray, float>(ImageGrey.Size);
                    Image<Gray, Byte> grad_x_abs = new Image<Gray, Byte>(ImageGrey.Size);
                    Image<Gray, Byte> grad_y_abs = new Image<Gray, Byte>(ImageGrey.Size);
                    Image<Gray, Byte> grad = new Image<Gray, Byte>(ImageGrey.Size);
                    //System.Drawing.Bitmap pixels = ImageFrame.ToBitmap();
                    //System.Drawing.Bitmap pixels;
                    //Emgu.CV.Matrix<Int32> pixels, grey_pixels;
                    //var pixels = new Emgu.CV.Image<Rgba, Int32>(ImageFrame.ToBitmap());
                    //var pixels_grey = new Emgu.CV.Image<Gray, Int32>(ImageFrame.ToBitmap());
                    //Matrix<Int32> grad_x;
                    //Matrix<Int32> grad_y;
                    //Emgu.CV.CvInvoke.cvCvtColor(pixels, pixels_grey, COLOR_CONVERSION.CV_RGB2GRAY);
                    //Emgu.CV.CvInvoke.cvSobel(pixels_grey, (IntPtr)(grad_x), 1, 0, 3);
                    //Emgu.CV.CvInvoke.cvSobel(pixels_grey, grad_y, 0, 1, 3);
                    //CvInvoke.cvCanny(ImageGrey, ImageGrey, 10, 60, 3);
                    CvInvoke.cvSobel(ImageGrey, grad_x, 1, 0, 3);
                    CvInvoke.cvConvertScaleAbs(grad_x, grad_x_abs, 1, 0);
                    CvInvoke.cvSobel(ImageGrey, grad_y, 0, 1, 3);
                    CvInvoke.cvConvertScaleAbs(grad_y, grad_y_abs, 1, 0);
                    CvInvoke.cvAddWeighted(grad_x_abs, 0.5, grad_y_abs, 0.5, 0, grad);
                    double mn = .0,mx = .0;
                    var mnpnt = new System.Drawing.Point();
                    var mxpnt = new System.Drawing.Point();
                    CvInvoke.cvMinMaxLoc(grad, ref mn, ref mx, ref mnpnt, ref mxpnt, IntPtr.Zero);
                    //CvInvoke.cvThreshold(grad, grad, mx - (mx - mn)/1.2 , 0, THRESH.CV_THRESH_TOZERO);
                    grad = grad.SmoothGaussian(17);
                    CvInvoke.cvAdaptiveThreshold(grad, grad, mx, ADAPTIVE_THRESHOLD_TYPE.CV_ADAPTIVE_THRESH_MEAN_C, THRESH.CV_THRESH_BINARY, 3, mn);
                    //Image<Gray, byte> grad_x = ImageGrey.Sobel(1, 0, 3);
                    //Image<Gray, byte> grad_y = ImageGrey.Sobel(0, 1, 3);

                    //ImageFrame.Bitmap.Save(stream, ImageFormat.Bmp);
                    //ImageGrey.Bitmap.Save(stream, ImageFormat.Bmp);
                    grad.Bitmap.Save(stream, ImageFormat.Bmp);

                    ImageSrc = new BitmapImage();
                    ImageSrc.BeginInit();
                    ImageSrc.StreamSource = new MemoryStream( stream.ToArray() );        //line 2
                    ImageSrc.EndInit();

                    ImageBox.Source = ImageSrc;
                }
            }
        }
开发者ID:rijkaard,项目名称:EmguWorkbench,代码行数:54,代码来源:CamCapture.xaml.cs

示例12: piecesCheck2

        private Image<Hls, Byte> piecesCheck2(Image<Bgr, Byte> img)
        {
            Image<Hls, Byte> result = new Image<Hls, byte>(img.Bitmap).PyrDown().PyrUp();

            Game a = new Game(leftRadio.IsChecked.Value);

            if (gaussian == true)
                result = result.SmoothGaussian(gaussianValue);

            if (contrast == true)
                result._EqualizeHist();

            //result[2] += saturation;

            int countBlack;
            int countWhite;

            List<int> gameState = new List<int>();

            for (int i = 0; i < 32; i++)
            {
                gameState.Add(2);
            }

            for (int i = 0; i < 32; i++)
            {
                int x = (int)boxList[i].center.X;
                int y = (int)boxList[i].center.Y;

                countWhite = 0;
                countBlack = 0;

                byte asd = result.Data[y, x, 1];

                if (asd > whiteLightness)
                {
                    countWhite++;
                    gameState[i] = 0;
                    result.Draw(new CircleF(boxList[i].center, 3), new Hls(120, 50, 100), 3);
                }
                if (asd < blackLightness)
                {
                    countBlack++;
                    gameState[i] = 1;
                    result.Draw(new CircleF(boxList[i].center, 3), new Hls(220, 60, 100), 3);
                }
            }

            previousGame = a;

            a.updateStatus(gameState);

            currentGame = a;

            return result;
        }
开发者ID:kebabkiller,项目名称:Checkers_Check,代码行数:56,代码来源:CalibrationPage.xaml.cs

示例13: GetFilteredImage

 private Image<Gray, byte> GetFilteredImage(Image<Bgr, byte> image)
 {
     Image<Bgr, Byte> smoothedImage = image.SmoothGaussian(5, 5, 1.5, 1.5);
     Image<Gray, Byte> smoothedRedMask = GetRedPixelMask(smoothedImage);
     smoothedRedMask._Dilate(1);
     smoothedRedMask._Erode(1);
     //Image<Gray, Byte> cannyImage = smoothedRedMask.Erode(5).Dilate(5).Canny(new Gray(100), new Gray(50));
         Image<Gray, Byte> cannyImage = smoothedRedMask.Erode(5).Dilate(5).Canny(100, 50);
     return cannyImage;
 }
开发者ID:abraxas4,项目名称:AR-Drone-Project,代码行数:10,代码来源:SignDetector.cs

示例14: StartDye

        public bool StartDye(int X, int Y, int Heigh, int Width, Image<Gray, Byte> ImgGray)
        {
            heigh = Heigh;
            width = Width;
            Start_Pixel_x = X;
            Start_Pixel_y = Y;
            imgGray = ImgGray;

            if (width <= 24) //elliminate noise 67,24
            { return false; }
            //ArrayList Set_Pixel_In_Row = new ArrayList(); // Array for college
            imgGray = imgGray.AddWeighted(imgGray, 1.0, 0.0, 0.0);
            imgGray = imgGray.ThresholdToZero(new Gray(100));
            imgGray = imgGray.SmoothGaussian(9);
            imgGray = imgGray.Canny(0, 80);
            bitmap = new Bitmap(imgGray.ToBitmap());
            Initial_Dye_Pixel(0);

            return Flag;
        }
开发者ID:RBChavez,项目名称:HumerusAnalysis,代码行数:20,代码来源:BitAnalysis_Parallism.cs

示例15: Run

        public cFeedBackMessage Run()
        {
            if (base.Start() == false)
            {
                base.FeedBackMessage.IsSucceed = false;
                return base.FeedBackMessage;
            }

            object _firstValue = base.ListProperties.FindByName("Kernel Size");
            int KernelSize = 0;
            if (_firstValue == null)
            {
                base.GenerateError("Kernel Size not found !");
                return base.FeedBackMessage;
            }
            try
            {
                cProperty TmpProp = (cProperty)_firstValue;
                KernelSize = (int)TmpProp.GetValue();
            }
            catch (Exception)
            {
                base.GenerateError("Kernel Size cast didn't work");
                return base.FeedBackMessage;
            }

            //Matrix<float> Signature1 = new Matrix<float>(this.Count, 2);
            //Matrix<float> Signature2 = new Matrix<float>(CompareTo.Count, 2);

            //for (int Idx = 0; Idx < this.Count; Idx++)
            //{
            //    Signature1[Idx, 0] = (float)this[Idx];
            //    Signature1[Idx, 1] = Idx;

            //    Signature2[Idx, 0] = (float)CompareTo[Idx];
            //    Signature2[Idx, 1] = Idx;
            //}

            //double ResutatEMD;
            //ResutatEMD = CvInvoke.cvCalcEMD2(Signature1.Ptr, Signature2.Ptr, DIST_TYPE.CV_DIST_L1, null, IntPtr.Zero, IntPtr.Zero, IntPtr.Zero, IntPtr.Zero);

            //Emgu.CV.Structure.MCvPoint2D64f

            // IntPtr SrcImage = CvInvoke.cvCreateImage(

            // Matrix<float> Src = new Matrix<float>(input.Data[inputBand].Data.ToArray());

            // Matrix<float> Dst = new Matrix<float>(output.Data[inputBand].Data.ToArray());
            //  CvArray<IPL_DEPTH.IPL_DEPTH_32F> SRC = new

            //IntPtr Src = CvInvoke.cvCreateImageHeader(new Size(input.Width, input.Height), IPL_DEPTH.IPL_DEPTH_32F, 1);
            //Src =  Marshal.UnsafeAddrOfPinnedArrayElement(input.Data[inputBand].Data, 0);
            //CvInvoke.image

            //ipl_image_p->imageData = my_float_image_data;
            // ipl_image_p->imageDataOrigin = ipl_image_p->imageData;

            base.Output = new cImage(base.Input, false);

            for (int IdxChannel = 0; IdxChannel < base.ListChannelsToBeProcessed.Count; IdxChannel++)
            {
                int CurrentChannel = base.ListChannelsToBeProcessed[IdxChannel];

                Image<Gray, float> inputImage = new Image<Gray, float>(Input.Width, Input.Height);

                //float[,] SrcArray = new float[input.Width, input.Height];
                for (int j = 0; j < Input.Height; j++)
                    for (int i = 0; i < Input.Width; i++)
                    {
                        inputImage.Data[j, i, 0] = Input.SingleChannelImage[CurrentChannel].Data[i + j * Input.Width];
                    }

                Image<Gray, float> ProcessedImage = new Image<Gray, float>(inputImage.Width, inputImage.Height);
                ProcessedImage = inputImage.SmoothGaussian(KernelSize);

                this.Output.SingleChannelImage[IdxChannel].SetNewDataFromOpenCV(ProcessedImage);

                //            CvInvoke.cvSmooth(inputImage.Ptr, smoothedImage.Ptr, SMOOTH_TYPE.CV_MEDIAN, 5, 0, 0, 0);
                //CvInvoke.cvSobel(inputImage.Ptr, smoothedImage.Ptr, 2, 2, 2);

                //CvInvoke.cvSmooth(inputImage.Ptr, smoothedImage.Ptr, SMOOTH_TYPE.CV_GAUSSIAN,13, 13, 1.5, 1);

                //smoothedImage =  inputImage.Sobel(1, 0, 3);
            }
            // float[,] DestArray = new float[output.Width,output.Height];
            //    IntPtr MyintPtrDst = Marshal.UnsafeAddrOfPinnedArrayElement(DestArray, 0);

            //    CvInvoke.cvShowImage("Test", MyintPtr);

            //CvInvoke.cvSmooth(MyintPtrSrc, MyintPtrDst, SMOOTH_TYPE.CV_GAUSSIAN, 0, 0, 3, 0);

            //for (int j = 0; j < input.Height; j++)
            //    for (int i = 0; i < input.Width; i++)
            //    {
            //        output.Data[outputBand].Data[i + j * output.Width] = ;
            //    }

            //  IntPtr Dest = CvInvoke.cvCreateMat(output.Width, output.Height, MAT_DEPTH.CV_32F);

            //Src.Width = input.Width;
//.........这里部分代码省略.........
开发者ID:cyrenaique,项目名称:HCSA,代码行数:101,代码来源:cImageFilterConvolution.cs


注:本文中的Image.SmoothGaussian方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。