本文整理汇总了C#中CelestialBody.GetPressure方法的典型用法代码示例。如果您正苦于以下问题:C# CelestialBody.GetPressure方法的具体用法?C# CelestialBody.GetPressure怎么用?C# CelestialBody.GetPressure使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类CelestialBody
的用法示例。
在下文中一共展示了CelestialBody.GetPressure方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: UpdatePosition
protected override Vector3 UpdatePosition()
{
if (EditorLogic.RootPart == null) {
/* DragCubes can get NaNed without this check */
return Vector3.zero;
}
if (RCSBuildAid.Mode != PluginMode.Parachutes) {
return Vector3.zero;
}
hasParachutes = RCSBuildAid.Parachutes.Count > 0;
body = Settings.selected_body;
altitude = MenuParachutes.altitude;
temperature = body.GetTemperature (altitude);
pressure = body.GetPressure (altitude);
density = body.GetDensity (pressure, temperature);
mach = (float)(speed / body.GetSpeedOfSound(pressure, density));
gravity = body.gravity(altitude);
findCenterOfDrag();
speed = Vt = calculateTerminalVelocity ();
/* unless I go at mach speeds I don't care about this
reynolds = (float)(density * speed);
reynoldsDragMult = PhysicsGlobals.DragCurvePseudoReynolds.Evaluate (reynolds);
*/
dragForce.Vector = calculateDragForce ();
return position;
}
示例2: GetDensity
public static double GetDensity(Vector3d position, CelestialBody body)
{
if (!body.atmosphere)
return 0;
double altitude = (position - body.position).magnitude - body.Radius;
if (altitude > body.atmosphereDepth)
return 0;
double pressure = body.GetPressure(altitude);
double temperature = GetTemperature(position, body);
return body.GetDensity(pressure, temperature);
}
示例3: GetDensity
/// <summary>
/// Gets the air density (rho) for the specified altitude on the specified body.
/// This is an approximation, because actual calculations, taking sun exposure into account to compute air temperature, require to know the actual point on the body where the density is to be computed (knowing the altitude is not enough).
/// However, the difference is small for high altitudes, so it makes very little difference for trajectory prediction.
/// </summary>
/// <param name="altitude">Altitude above sea level (in meters)</param>
/// <param name="body"></param>
/// <returns></returns>
public static double GetDensity(double altitude, CelestialBody body)
{
if (!body.atmosphere)
return 0;
if (altitude > body.atmosphereDepth)
return 0;
double pressure = body.GetPressure(altitude);
// get an average day/night temperature at the equator
double sunDot = 0.5;
float sunAxialDot = 0;
double atmosphereTemperatureOffset = (double)body.latitudeTemperatureBiasCurve.Evaluate(0) + (double)body.latitudeTemperatureSunMultCurve.Evaluate(0) * sunDot + (double)body.axialTemperatureSunMultCurve.Evaluate(sunAxialDot);
double temperature = body.GetTemperature(altitude) + (double)body.atmosphereTemperatureSunMultCurve.Evaluate((float)altitude) * atmosphereTemperatureOffset;
return body.GetDensity(pressure, temperature);
}
示例4: StartSimulation
protected void StartSimulation()
{
simBody = HighLogic.LoadedSceneIsEditor ? editorBody ?? Planetarium.fetch.Home : vessel.mainBody;
SimManager.Gravity = 9.81 * simBody.GeeASL;
SimManager.Atmosphere = (HighLogic.LoadedSceneIsEditor ? (simBody.atmosphere ? simBody.GetPressure(0) : 0) : vessel.staticPressurekPa) * PhysicsGlobals.KpaToAtmospheres;
SimManager.Mach = HighLogic.LoadedSceneIsEditor ? 1 : vessel.mach;
SimManager.vectoredThrust = dVLinearThrust;
SimManager.Body = simBody;
Profiler.BeginSample("MechJebModuleStageStats.StartSimulation()");
SimManager.RequestSimulation();
SimManager.TryStartSimulation();
Profiler.EndSample();
}
示例5: SimAeroForce
//*******************************************************
public static Vector3 SimAeroForce(List<Part> parts, CelestialBody body, Vector3 v_wrld_vel, double altitude, double latitude = 0.0)
{
double pressure = body.GetPressure(altitude);
// Lift and drag for force accumulation.
Vector3d total_lift = Vector3d.zero;
Vector3d total_drag = Vector3d.zero;
// dynamic pressure for standard drag equation
double rho = GetDensity(altitude, body);
double dyn_pressure = 0.0005 * rho * v_wrld_vel.sqrMagnitude;
if (rho <= 0)
{
return Vector3.zero;
}
double soundSpeed = body.GetSpeedOfSound(pressure, rho);
double mach = v_wrld_vel.magnitude / soundSpeed;
if (mach > 25.0) { mach = 25.0; }
// Loop through all parts, accumulating drag and lift.
foreach(Part p in parts)
{
// need checks on shielded components
if (p.ShieldedFromAirstream || p.Rigidbody == null)
{
continue;
}
// Get Drag
Vector3 sim_dragVectorDir = v_wrld_vel.normalized;
Vector3 sim_dragVectorDirLocal = -(p.transform.InverseTransformDirection(sim_dragVectorDir));
Vector3 liftForce = new Vector3(0, 0, 0);
switch(p.dragModel)
{
case Part.DragModel.DEFAULT:
case Part.DragModel.CUBE:
SmartDragCubeList cubes = new SmartDragCubeList(p, parts);
DragCubeList.CubeData p_drag_data;
float drag;
if (cubes.None) // since 1.0.5, some parts don't have drag cubes (for example fuel lines and struts)
{
drag = p.maximum_drag;
}
else
{
p_drag_data = cubes.AddSurfaceDragDirection(-sim_dragVectorDirLocal, (float)mach);
drag = p_drag_data.areaDrag * PhysicsGlobals.DragCubeMultiplier;
liftForce = p_drag_data.liftForce;
}
double sim_dragScalar = dyn_pressure * (double)drag * PhysicsGlobals.DragMultiplier;
total_drag += -(Vector3d)sim_dragVectorDir * sim_dragScalar;
break;
case Part.DragModel.SPHERICAL:
total_drag += -(Vector3d)sim_dragVectorDir * (double)p.maximum_drag;
break;
case Part.DragModel.CYLINDRICAL:
total_drag += -(Vector3d)sim_dragVectorDir * (double)Mathf.Lerp(p.minimum_drag, p.maximum_drag, Mathf.Abs(Vector3.Dot(p.partTransform.TransformDirection(p.dragReferenceVector), sim_dragVectorDir)));
break;
case Part.DragModel.CONIC:
total_drag += -(Vector3d)sim_dragVectorDir * (double)Mathf.Lerp(p.minimum_drag, p.maximum_drag, Vector3.Angle(p.partTransform.TransformDirection(p.dragReferenceVector), sim_dragVectorDir) / 180f);
break;
default:
// no drag to apply
break;
}
// If it isn't a wing or lifter, get body lift.
if (!p.hasLiftModule)
{
float simbodyLiftScalar = p.bodyLiftMultiplier * PhysicsGlobals.BodyLiftMultiplier * (float)dyn_pressure;
simbodyLiftScalar *= PhysicsGlobals.GetLiftingSurfaceCurve("BodyLift").liftMachCurve.Evaluate((float)mach);
Vector3 bodyLift = p.transform.rotation * (simbodyLiftScalar * liftForce);
bodyLift = Vector3.ProjectOnPlane(bodyLift, sim_dragVectorDir);
// Only accumulate forces for non-LiftModules
total_lift += bodyLift;
}
// Find ModuleLifingSurface for wings and liftforce.
// Should catch control surface as it is a subclass
foreach (var m in p.Modules.OfType<ModuleLiftingSurface>())
{
float mcs_mod = 1.0f;
double liftQ = dyn_pressure * 1000;
ModuleLiftingSurface wing = (ModuleLiftingSurface)m;
Vector3 nVel = Vector3.zero;
Vector3 liftVector = Vector3.zero;
//.........这里部分代码省略.........
示例6: UpdateAtmoTexture
//redraw the picture of the planned flight path
public static void UpdateAtmoTexture(Texture2D texture, CelestialBody mainBody, double maxAltitude, bool realAtmo = false)
{
double scale = maxAltitude / texture.height; //meters per pixel
double maxAtmosphereAltitude = mainBody.RealMaxAtmosphereAltitude();
double pressureSeaLevel = mainBody.atmospherePressureSeaLevel;
for (int y = 0; y < texture.height; y++)
{
double alt = scale * y;
if (realAtmo)
{
alt = mainBody.GetPressure(alt) / pressureSeaLevel;
}
else
{
alt = 1.0 - alt / maxAtmosphereAltitude;
}
float v = (float)(mainBody.atmosphere ? alt : 0.0F);
Color c = new Color(0.0F, 0.0F, v);
for (int x = 0; x < texture.width; x++)
{
texture.SetPixel(x, y, c);
if (mainBody.atmosphere && (int)(maxAtmosphereAltitude / scale) == y)
texture.SetPixel(x, y, XKCDColors.LightGreyBlue);
}
}
texture.Apply();
}