当前位置: 首页>>代码示例>>C++>>正文


C++ Matrix3f::size方法代码示例

本文整理汇总了C++中eigen::Matrix3f::size方法的典型用法代码示例。如果您正苦于以下问题:C++ Matrix3f::size方法的具体用法?C++ Matrix3f::size怎么用?C++ Matrix3f::size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在eigen::Matrix3f的用法示例。


在下文中一共展示了Matrix3f::size方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: cloud

int
main(int argc, char** argv)
{
	pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZRGB>);

	pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_plane(new pcl::PointCloud<pcl::PointXYZRGB>);

	if (pcl::io::loadPCDFile<pcl::PointXYZRGB>("../learn15.pcd", *cloud) == -1) //* load the file
	{
		PCL_ERROR("Couldn't read file test_pcd.pcd \n");
		return (-1);
	}

	pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
	pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
	// Create the segmentation object
	pcl::SACSegmentation<pcl::PointXYZRGB> seg;
	// Optional
	seg.setOptimizeCoefficients(true);
	// Mandatory
	seg.setModelType(pcl::SACMODEL_PLANE);
	seg.setMethodType(pcl::SAC_RANSAC);
	seg.setDistanceThreshold(0.01);
	seg.setInputCloud(cloud);
	seg.segment(*inliers, *coefficients);

	if (inliers->indices.size() == 0)
	{
		PCL_ERROR("Could not estimate a planar model for the given dataset.");
		return (-1);
	}

	std::cerr << "Model coefficients: " << coefficients->values[0] << " "
		<< coefficients->values[1] << " "
		<< coefficients->values[2] << " "
		<< coefficients->values[3] << std::endl;

	pcl::ExtractIndices<pcl::PointXYZRGB> extract;
	extract.setInputCloud(cloud);
	extract.setIndices(inliers);
	extract.setNegative(true);
	//Removes part_of_cloud but retain the original full_cloud
	//extract.setNegative(true); // Removes part_of_cloud from full cloud  and keep the rest
	extract.filter(*cloud_plane);

	pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZRGB>);
	pcl::StatisticalOutlierRemoval<pcl::PointXYZRGB> sor;
	sor.setInputCloud(cloud_plane);
	sor.setMeanK(50);
	sor.setStddevMulThresh(1.0);
	sor.filter(*cloud_filtered);

	//cloud.swap(cloud_plane);
	/*
	pcl::visualization::CloudViewer viewer("Simple Cloud Viewer");
	viewer.showCloud(cloud_plane);
	while (!viewer.wasStopped())
	{
	}
	*/
	Eigen::Affine3f transform_2 = Eigen::Affine3f::Identity();
	Eigen::Matrix<float, 1, 3> fitted_plane_norm, xyaxis_plane_norm, rotation_axis;
	fitted_plane_norm[0] = coefficients->values[0];
	fitted_plane_norm[1] = coefficients->values[1];
	fitted_plane_norm[2] = coefficients->values[2];
	xyaxis_plane_norm[0] = 0.0;
	xyaxis_plane_norm[1] = 0.0;
	xyaxis_plane_norm[2] = 1.0;
	rotation_axis = xyaxis_plane_norm.cross(fitted_plane_norm);
	float theta = acos(xyaxis_plane_norm.dot(fitted_plane_norm)); 
	//float theta = -atan2(rotation_axis.norm(), xyaxis_plane_norm.dot(fitted_plane_norm));
	transform_2.rotate(Eigen::AngleAxisf(theta, rotation_axis));
	pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_recentered(new pcl::PointCloud<pcl::PointXYZRGB>);
	pcl::transformPointCloud(*cloud_filtered, *cloud_recentered, transform_2);

	
	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_xyz(new pcl::PointCloud<pcl::PointXYZ>); 
	pcl::copyPointCloud(*cloud_recentered, *cloud_xyz);

	///////////////////////////////////////////////////////////////////
	Eigen::Vector4f pcaCentroid;
	pcl::compute3DCentroid(*cloud_xyz, pcaCentroid);
 	Eigen::Matrix3f covariance;
	
	computeCovarianceMatrixNormalized(*cloud_xyz, pcaCentroid, covariance);
	Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigen_solver(covariance, Eigen::ComputeEigenvectors);
	Eigen::Matrix3f eigenVectorsPCA = eigen_solver.eigenvectors();
	std::cout << eigenVectorsPCA.size() << std::endl;
	if(eigenVectorsPCA.size()!=9)
	eigenVectorsPCA.col(2) = eigenVectorsPCA.col(0).cross(eigenVectorsPCA.col(1));


	
	Eigen::Matrix4f projectionTransform(Eigen::Matrix4f::Identity());
	projectionTransform.block<3, 3>(0, 0) = eigenVectorsPCA.transpose();
	projectionTransform.block<3, 1>(0, 3) = -1.f * (projectionTransform.block<3, 3>(0, 0) * pcaCentroid.head<3>());
	pcl::PointCloud<pcl::PointXYZ>::Ptr cloudPointsProjected(new pcl::PointCloud<pcl::PointXYZ>);
	pcl::transformPointCloud(*cloud_xyz, *cloudPointsProjected, projectionTransform);
	// Get the minimum and maximum points of the transformed cloud.
	pcl::PointXYZ minPoint, maxPoint;
//.........这里部分代码省略.........
开发者ID:sylarcp,项目名称:robotvision,代码行数:101,代码来源:mainz.cpp


注:本文中的eigen::Matrix3f::size方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。