当前位置: 首页>>代码示例>>C++>>正文


C++ Matrix3f::diagonal方法代码示例

本文整理汇总了C++中eigen::Matrix3f::diagonal方法的典型用法代码示例。如果您正苦于以下问题:C++ Matrix3f::diagonal方法的具体用法?C++ Matrix3f::diagonal怎么用?C++ Matrix3f::diagonal使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在eigen::Matrix3f的用法示例。


在下文中一共展示了Matrix3f::diagonal方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: t

void X3DConverter::startShape(const std::array<float, 12>& matrix) {

    // Finding axis/angle from matrix using Eigen for its bullet proof implementation.
    Eigen::Transform<float, 3, Eigen::Affine> t;
    t.setIdentity();
    for (unsigned int i = 0; i < 3; i++) {
        for (unsigned int j = 0; j < 4; j++) {
            t(i, j) = matrix[i+j*3];
        }
    }

    Eigen::Matrix3f rotationMatrix;
	Eigen::Matrix3f scaleMatrix;
    t.computeRotationScaling(&rotationMatrix, &scaleMatrix);
	Eigen::Quaternionf q;
	Eigen::AngleAxisf aa;
	q = rotationMatrix;
    aa = q;

	Eigen::Vector3f scale = scaleMatrix.diagonal();
	Eigen::Vector3f translation = t.translation();

    startNode(ID::Transform);
    m_writers.back()->setSFVec3f(ID::translation, translation.x(), translation.y() , translation.z());
    m_writers.back()->setSFRotation(ID::rotation, aa.axis().x(), aa.axis().y(), aa.axis().z(), aa.angle());
    m_writers.back()->setSFVec3f(ID::scale, scale.x(), scale.y(), scale.z());
    startNode(ID::Shape);
    startNode(ID::Appearance);
    startNode(ID::Material);
    m_writers.back()->setSFColor<vector<float> >(ID::diffuseColor, RVMColorHelper::color(m_materials.back()));
    endNode(ID::Material); // Material
    endNode(ID::Appearance); // Appearance

}
开发者ID:Supporting,项目名称:pmuc,代码行数:34,代码来源:x3dconverter.cpp

示例2: computeVariances

bool StereoSensorProcessor::computeVariances(
    const pcl::PointCloud<pcl::PointXYZRGB>::ConstPtr pointCloud,
    const Eigen::Matrix<double, 6, 6>& robotPoseCovariance,
    Eigen::VectorXf& variances)
{
  variances.resize(pointCloud->size());

  // Projection vector (P).
  const Eigen::RowVector3f projectionVector = Eigen::RowVector3f::UnitZ();

  // Sensor Jacobian (J_s).
  const Eigen::RowVector3f sensorJacobian = projectionVector * (rotationMapToBase_.transposed() * rotationBaseToSensor_.transposed()).toImplementation().cast<float>();

  // Robot rotation covariance matrix (Sigma_q).
  Eigen::Matrix3f rotationVariance = robotPoseCovariance.bottomRightCorner(3, 3).cast<float>();

  // Preparations for#include <pcl/common/transforms.h> robot rotation Jacobian (J_q) to minimize computation for every point in point cloud.
  const Eigen::Matrix3f C_BM_transpose = rotationMapToBase_.transposed().toImplementation().cast<float>();
  const Eigen::RowVector3f P_mul_C_BM_transpose = projectionVector * C_BM_transpose;
  const Eigen::Matrix3f C_SB_transpose = rotationBaseToSensor_.transposed().toImplementation().cast<float>();
  const Eigen::Matrix3f B_r_BS_skew = kindr::getSkewMatrixFromVector(Eigen::Vector3f(translationBaseToSensorInBaseFrame_.toImplementation().cast<float>()));

  for (unsigned int i = 0; i < pointCloud->size(); ++i)
  {
    // For every point in point cloud.

    // Preparation.
    pcl::PointXYZRGB point = pointCloud->points[i];
    double disparity = sensorParameters_.at("depth_to_disparity_factor")/point.z;
    Eigen::Vector3f pointVector(point.x, point.y, point.z); // S_r_SP
    float heightVariance = 0.0; // sigma_p

    // Measurement distance.
    float measurementDistance = pointVector.norm();

    // Compute sensor covariance matrix (Sigma_S) with sensor model.
    float varianceNormal = pow(sensorParameters_.at("depth_to_disparity_factor") / pow(disparity, 2), 2)
        * ((sensorParameters_.at("p_5") * disparity + sensorParameters_.at("p_2"))
            * sqrt(pow(sensorParameters_.at("p_3") * disparity + sensorParameters_.at("p_4") - getJ(i), 2)
                    + pow(240 - getI(i), 2)) + sensorParameters_.at("p_1"));
    float varianceLateral = pow(sensorParameters_.at("lateral_factor") * measurementDistance, 2);
    Eigen::Matrix3f sensorVariance = Eigen::Matrix3f::Zero();
    sensorVariance.diagonal() << varianceLateral, varianceLateral, varianceNormal;

    // Robot rotation Jacobian (J_q).
    const Eigen::Matrix3f C_SB_transpose_times_S_r_SP_skew = kindr::getSkewMatrixFromVector(Eigen::Vector3f(C_SB_transpose * pointVector));
    Eigen::RowVector3f rotationJacobian = P_mul_C_BM_transpose * (C_SB_transpose_times_S_r_SP_skew + B_r_BS_skew);

    // Measurement variance for map (error propagation law).
    heightVariance = rotationJacobian * rotationVariance * rotationJacobian.transpose();
    heightVariance += sensorJacobian * sensorVariance * sensorJacobian.transpose();

    // Copy to list.
    variances(i) = heightVariance;
  }

  return true;
}
开发者ID:gaoyunhua,项目名称:elevation_mapping,代码行数:58,代码来源:StereoSensorProcessor.cpp

示例3: computeVariances

bool LaserSensorProcessor::computeVariances(
		const pcl::PointCloud<pcl::PointXYZRGB>::ConstPtr pointCloud,
		const Eigen::Matrix<double, 6, 6>& robotPoseCovariance,
		Eigen::VectorXf& variances)
{
	variances.resize(pointCloud->size());

	// Projection vector (P).
	const Eigen::RowVector3f projectionVector = Eigen::RowVector3f::UnitZ();

	// Sensor Jacobian (J_s).
	const Eigen::RowVector3f sensorJacobian = projectionVector * (rotationMapToBase_.transposed() * rotationBaseToSensor_.transposed()).toImplementation().cast<float>();

	// Robot rotation covariance matrix (Sigma_q).
	Eigen::Matrix3f rotationVariance = robotPoseCovariance.bottomRightCorner(3, 3).cast<float>();

	// Preparations for robot rotation Jacobian (J_q) to minimize computation for every point in point cloud.
	const Eigen::Matrix3f C_BM_transpose = rotationMapToBase_.transposed().toImplementation().cast<float>();
	const Eigen::RowVector3f P_mul_C_BM_transpose = projectionVector * C_BM_transpose;
	const Eigen::Matrix3f C_SB_transpose = rotationBaseToSensor_.transposed().toImplementation().cast<float>();
	const Eigen::Matrix3f B_r_BS_skew = kindr::linear_algebra::getSkewMatrixFromVector(Eigen::Vector3f(translationBaseToSensorInBaseFrame_.toImplementation().cast<float>()));

	for (unsigned int i = 0; i < pointCloud->size(); ++i)
	{
		// For every point in point cloud.

		// Preparation.
		auto& point = pointCloud->points[i];
		Eigen::Vector3f pointVector(point.x, point.y, point.z); // S_r_SP
		float heightVariance = 0.0; // sigma_p

		// Measurement distance.
		float measurementDistance = pointVector.norm();

		// Compute sensor covariance matrix (Sigma_S) with sensor model.
		float varianceNormal = pow(sensorParameters_.at("min_radius"), 2);
		float varianceLateral = pow(sensorParameters_.at("beam_constant") + sensorParameters_.at("beam_angle") * measurementDistance, 2);
		Eigen::Matrix3f sensorVariance = Eigen::Matrix3f::Zero();
		sensorVariance.diagonal() << varianceLateral, varianceLateral, varianceNormal;

		// Robot rotation Jacobian (J_q).
		const Eigen::Matrix3f C_SB_transpose_times_S_r_SP_skew = kindr::linear_algebra::getSkewMatrixFromVector(Eigen::Vector3f(C_SB_transpose * pointVector));
		Eigen::RowVector3f rotationJacobian = P_mul_C_BM_transpose * (C_SB_transpose_times_S_r_SP_skew + B_r_BS_skew);

		// Measurement variance for map (error propagation law).
		heightVariance = rotationJacobian * rotationVariance * rotationJacobian.transpose();
		heightVariance += sensorJacobian * sensorVariance * sensorJacobian.transpose();

		// Copy to list.
		variances(i) = heightVariance;
	}

	return true;
}
开发者ID:amiltonwong,项目名称:elevation_mapping,代码行数:54,代码来源:LaserSensorProcessor.cpp

示例4: processFrame

  void PwnTracker::processFrame(const DepthImage& depthImage_, 
				const Eigen::Isometry3f& sensorOffset_, 
				const Eigen::Matrix3f& cameraMatrix_,
				const Eigen::Isometry3f& initialGuess){
    int r,c;
    Eigen::Matrix3f scaledCameraMatrix = cameraMatrix_;
    _currentCloudOffset = sensorOffset_;
    _currentCameraMatrix = cameraMatrix_;
    _currentDepthImage = depthImage_;
    _currentCloud = makeCloud(r,c,scaledCameraMatrix,_currentCloudOffset,_currentDepthImage);
    
    bool newFrame = false;
    bool newRelation = false;
    PwnTrackerFrame* currentTrackerFrame=0;
    Eigen::Isometry3d relationMean;
    if (_previousCloud){
      _aligner->setCurrentSensorOffset(_currentCloudOffset);
      _aligner->setCurrentFrame(_currentCloud);
      _aligner->setReferenceSensorOffset(_previousCloudOffset);
      _aligner->setReferenceFrame(_previousCloud);

      _aligner->correspondenceFinder()->setImageSize(r,c);
      PinholePointProjector* alprojector=dynamic_cast<PinholePointProjector*>(_aligner->projector());
      alprojector->setCameraMatrix(scaledCameraMatrix);
      alprojector->setImageSize(r,c);

      Eigen::Isometry3f guess=_previousCloudTransform.inverse()*_globalT*initialGuess;
      _aligner->setInitialGuess(guess);
      double t0, t1;
      t0 = g2o::get_time();
      _aligner->align();

      t1 = g2o::get_time();
      std::cout << "Time: " << t1 - t0 << " seconds " << std::endl;
 
      cerr << "inliers: " << _aligner->inliers() << endl;
      // cerr << "chi2: " << _aligner->error() << endl;
      // cerr << "chi2/inliers: " << _aligner->error()/_aligner->inliers() << endl;
      // cerr << "initialGuess: " << t2v(guess).transpose() << endl;
      // cerr << "transform   : " << t2v(_aligner->T()).transpose() << endl;
      if (_aligner->inliers()>0){
    	_globalT = _previousCloudTransform*_aligner->T();
    	//cerr << "TRANSFORM FOUND" <<  endl;
      } else {
    	//cerr << "FAILURE" <<  endl;
    	_globalT = _globalT*guess;
      }
      convertScalar(relationMean, _aligner->T());
      if (! (_counter%50) ) {
    	Eigen::Matrix3f R = _globalT.linear();
    	Eigen::Matrix3f E = R.transpose() * R;
    	E.diagonal().array() -= 1;
    	_globalT.linear() -= 0.5 * R * E;
      }
      _globalT.matrix().row(3) << 0,0,0,1;
 
      newAlignmentCallbacks(_globalT, _aligner->T(), _aligner->inliers(), _aligner->error());
			   
      int maxInliers = r*c;
      float inliersFraction = (float) _aligner->inliers()/(float) maxInliers;
      cerr << "inliers/maxinliers/fraction: " << _aligner->inliers() << "/" << maxInliers << "/" << inliersFraction << endl;
      if (inliersFraction<_newFrameInliersFraction){
	newFrame = true;
	newRelation = true;

	// char filename[1024];
	// sprintf (filename, "frame-%05d.pwn", _numKeyframes);
	// frame->save(filename,1,true,_globalT);

	_numKeyframes ++;
	if (!_cache) 
	  delete _previousCloud;
	else{
	  _previousCloudHandle.release();
	}
	//_cache->unlock(_previousTrackerFrame);
	// _aligner->setReferenceSensorOffset(_currentCloudOffset);
	// _aligner->setReferenceFrame(_currentCloud);
	_previousCloud = _currentCloud;
	_previousCloudTransform = _globalT;
	// cerr << "new frame added (" << _numKeyframes <<  ")" << endl;
	// cerr << "inliers: " << _aligner->inliers() << endl;
	// cerr << "maxInliers: " << maxInliers << endl;
	// cerr << "chi2: " << _aligner->error() << endl;
	// cerr << "chi2/inliers: " << _aligner->error()/_aligner->inliers() << endl;
	// cerr << "initialGuess: " << t2v(guess).transpose() << endl;
	// cerr << "transform   : " << t2v(_aligner->T()).transpose() << endl;
	// cerr << "globalTransform   : " << t2v(_globalT).transpose() << endl;
      } else { // previous frame but offset is small
	delete _currentCloud;
	_currentCloud = 0;
      }
    } else { // first frame
      //ser.writeObject(*manager);
      newFrame = true;
      // _aligner->setReferenceSensorOffset(_currentCloudOffset);
      // _aligner->setReferenceFrame(_currentCloud);
      _previousCloud = _currentCloud;
      _previousCloudTransform = _globalT;
      _previousCloudOffset = _currentCloudOffset;
//.........这里部分代码省略.........
开发者ID:Jinqiang,项目名称:g2o_frontend,代码行数:101,代码来源:pwn_tracker.cpp

示例5: main

int main(int argc, char **argv){

#if 0
  DOF6::TFLinkvf rot1,rot2;
  Eigen::Matrix4f tf1 = build_random_tflink(rot1,3);
  Eigen::Matrix4f tf2 = build_random_tflink(rot2,3);

  DOF6::DOF6_Source<DOF6::TFLinkvf,DOF6::TFLinkvf,float> abc(rot1.makeShared(), rot2.makeShared());
  abc.getRotation();
  abc.getTranslation();

  std::cout<<"tf1\n"<<tf1<<"\n";
  std::cout<<"tf2\n"<<tf2<<"\n";
  std::cout<<"tf1*2\n"<<tf1*tf2<<"\n";
  std::cout<<"tf2*1\n"<<tf2*tf1<<"\n";

  std::cout<<"tf1\n"<<rot1.getTransformation()<<"\n";
  std::cout<<"tf2\n"<<rot2.getTransformation()<<"\n";
  std::cout<<"tf1*2\n"<<(rot1+rot2).getTransformation()<<"\n";

  rot1.check();
  rot2.check();

  return 0;

  pcl::RotationFromCorrespondences rfc;
  Eigen::Vector3f n, nn, v,n2,n3,z,y,tv;
  float a = 0.1f;

  z.fill(0);y.fill(0);
  z(2)=1;y(1)=1;
  nn.fill(0);
  nn(0) = 1;
  Eigen::AngleAxisf aa(a,nn);

  nn.fill(100);

  n.fill(0);
  n(0) = 1;
  n2.fill(0);
  n2=n;
  n2(1) = 0.2;
  n3.fill(0);
  n3=n;
  n3(2) = 0.2;

  n2.normalize();
  n3.normalize();

  tv.fill(1);
  tv.normalize();

#if 0

#if 0
  rfc.add(n,aa.toRotationMatrix()*n+nn,
          1*n.cross(y),1*n.cross(z),
          1*(aa.toRotationMatrix()*n).cross(y),1*(aa.toRotationMatrix()*n).cross(z),
          1,1/sqrtf(3));
#else
  rfc.add(n,aa.toRotationMatrix()*n,
          0*n.cross(y),0*n.cross(z),
          0*(aa.toRotationMatrix()*n).cross(y),0*(aa.toRotationMatrix()*n).cross(z),
          1,0);
#endif

#if 1
  rfc.add(n2,aa.toRotationMatrix()*n2+nn,
          tv,tv,
          tv,tv,
          1,1);
#else
  rfc.add(n2,aa.toRotationMatrix()*n2+nn,
          1*n2.cross(y),1*n2.cross(z),
          1*(aa.toRotationMatrix()*n2).cross(y),1*(aa.toRotationMatrix()*n2).cross(z),
          1,1/sqrtf(3));
#endif

#else
  float f=1;
  Eigen::Vector3f cyl;
  cyl.fill(1);
  cyl(0)=1;
  Eigen::Matrix3f cylM;
  cylM.fill(0);
  cylM.diagonal() = cyl;
  rfc.add(n,aa.toRotationMatrix()*n,
          f*n.cross(y),f*n.cross(z),
          f*(aa.toRotationMatrix()*n).cross(y),f*(aa.toRotationMatrix()*n).cross(z),
          1,0);
  rfc.add(n2,aa.toRotationMatrix()*n2+nn,
          1*n2.cross(y),1*n2.cross(z),
          1*(aa.toRotationMatrix()*n2).cross(y),1*(aa.toRotationMatrix()*n2).cross(z),
          1,1);
#endif
  rfc.add(n3,aa.toRotationMatrix()*n3+nn,
          //tv,tv,
          //tv,tv,
          n3.cross(y),n3.cross(z),
          1*(aa.toRotationMatrix()*n3).cross(y),1*(aa.toRotationMatrix()*n3).cross(z),
//.........这里部分代码省略.........
开发者ID:Etimr,项目名称:cob_environment_perception,代码行数:101,代码来源:atoms.cpp

示例6: rawCloudHandler


//.........这里部分代码省略.........
		// Test set - calculate performance statistics
		if (testdata == true)
		{
			std::cout << confMat << std::endl;
			confMats.push_back(confMat);

			if (true)//k==files.size()-1)
			{
				ofstream myfile;
				string resultsFolder = "/home/mikkel/catkin_ws/src/Results/";
				myfile.open ((resultsFolder + "run_number_here.txt").c_str());

				// Distance threshold
				myfile << "DistanceThreshold:" << distThr << ";\n";

				// Neighborhood parameters
				myfile << "Neighborhood:" << rmin << ";" << rmindist << ";" << rmax << ";" << rmaxdist << ";\n";

				// Features
				myfile << "Features:";
				for (int d=0;d<dim;d++)
					myfile << useFeatures[d] << ";";
				myfile << "\n";

				myfile << "ConfusionMatrix:";
				for (size_t i=0;i<confMats.size();i++)
				{
					for (int r=0;r<confMats[i].rows();r++)
						for (int c=0;c<confMats[i].cols();c++)
							myfile << confMats[i](r,c) << ";";
					myfile << "\n";
				}

				myfile << "Accuracy:" << confMat.diagonal().sum()/confMat.sum() << ";\n";


				myfile.close();
			}

		}
		featureCloudAcc->clear();
		labels.clear();

#else

		for (size_t i=0;i<transformedCloud->size();i++)
		{
			pcl::PointXYZI pTmp2 = transformedCloud->points[i];
			pcl::PointXYZRGB pTmp;
			pTmp.x = pTmp2.x;
			pTmp.y = pTmp2.y;
			pTmp.z = pTmp2.z;
			pTmp.r = 255;
			pTmp.g = 255;
			if (pTmp.z > 0.1) // Object
			{
				classificationCloud->push_back(pTmp);
			}
		}

		if (visualizationFlag)
		{
			pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB> colorC(classificationCloud);
			viewer->addPointCloud<pcl::PointXYZRGB>(classificationCloud,colorC,"Classification",viewP(Classification));
			viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "Classification");
			viewer->addText ("Classification", 10, 10, fontsize, 1, 1, 1, "Classification text", viewP(Classification));
开发者ID:SafeSummerSchool,项目名称:navigation_test,代码行数:67,代码来源:obstacle_detection.cpp

示例7: processNode


//.........这里部分代码省略.........
      cerr << "Frames: " << _previousFrame << " " << frame << endl;

      
      // projector->setCameraMatrix(cameraMatrix);
      // projector->setTransform(Eigen::Isometry3f::Identity());
      // Eigen::MatrixXi debugIndices(r,c);
      // DepthImage debugImage(r,c);
      // projector->project(debugIndices, debugImage, frame->points());

      _aligner->align();
      
      // sprintf(buf, "img-dbg-%05d.pgm",j);
      // debugImage.save(buf);
      //sprintf(buf, "img-ref-%05d.pgm",j);
      //_aligner->correspondenceFinder()->referenceDepthImage().save(buf);
      //sprintf(buf, "img-cur-%05d.pgm",j);
      //_aligner->correspondenceFinder()->currentDepthImage().save(buf);

      cerr << "inliers: " << _aligner->inliers() << endl;
      cerr << "chi2: " << _aligner->error() << endl;
      cerr << "chi2/inliers: " << _aligner->error()/_aligner->inliers() << endl;
      cerr << "initialGuess: " << t2v(guess).transpose() << endl;
      cerr << "transform   : " << t2v(_aligner->T()).transpose() << endl;
      if (_aligner->inliers()>-1){
 	_globalT = _globalT*_aligner->T();
	cerr << "TRANSFORM FOUND" <<  endl;
      } else {
	cerr << "FAILURE" <<  endl;
	_globalT = _globalT*guess;
      }
      if (! (_counter%50) ) {
	Eigen::Matrix3f R = _globalT.linear();
	Eigen::Matrix3f E = R.transpose() * R;
	E.diagonal().array() -= 1;
	_globalT.linear() -= 0.5 * R * E;
      }
      _globalT.matrix().row(3) << 0,0,0,1;
      cerr << "globalTransform   : " << t2v(_globalT).transpose() << endl;

      // char buf[1024];
      // sprintf(buf, "frame-%05d.pwn",_counter);
      // frame->save(buf, 1, true, _globalT);


      cerr << "creating alias" << endl;
      // create an alias for the previous node
      MapNodeAlias* newRoot = new MapNodeAlias(_previousSensingFrameNode,_previousSensingFrameNode->manager());
      _previousSensingFrameNode->manager()->addNode(newRoot);
      
      cerr << "creating alias relation" << endl;
      MapNodeAliasRelation* aliasRel = new MapNodeAliasRelation(newRoot,_previousSensingFrameNode->manager());
      aliasRel->nodes()[0] = newRoot;
      aliasRel->nodes()[1] = _previousSensingFrameNode;
      _previousSensingFrameNode->manager()->addRelation(aliasRel);
      
      cerr << "reparenting old elements" << endl;
      // assign all the used relations to the alias node
      if (imu){
	imu->setOwner(newRoot);
	imu->manager()->addRelation(imu);
      }

      if (odom){
	odom->setOwner(newRoot);
	odom->manager()->addRelation(imu);
      }
开发者ID:9578577,项目名称:g2o_frontend,代码行数:67,代码来源:two_depthimage_aligner_node.cpp


注:本文中的eigen::Matrix3f::diagonal方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。