当前位置: 首页>>代码示例>>C++>>正文


C++ Matrix3f::col方法代码示例

本文整理汇总了C++中eigen::Matrix3f::col方法的典型用法代码示例。如果您正苦于以下问题:C++ Matrix3f::col方法的具体用法?C++ Matrix3f::col怎么用?C++ Matrix3f::col使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在eigen::Matrix3f的用法示例。


在下文中一共展示了Matrix3f::col方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: es

visualization_msgs::Marker SatDetector3DMonitor::getMarker(int marker_id, Eigen::Vector4f centroid, Eigen::Matrix3f covariance_matrix){

  //------- Compute Principal Componets for Marker publishing


  //Get the principal components and the quaternion
  Eigen::Matrix3f evecs;
  Eigen::Vector3f evals;
  //pcl::eigen33 (covariance_matrix, evecs, evals);
  Eigen::EigenSolver<Eigen::Matrix3f> es(covariance_matrix);
	
  evecs = es.eigenvectors().real();
  evals = es.eigenvalues().real();
	    
  Eigen::Matrix3f rotation;
  rotation.row (0) = evecs.col (0);
  rotation.row (1) = evecs.col (1);
  rotation.row (2) = rotation.row (0).cross (rotation.row (1));
	    
  rotation.transposeInPlace ();
  Eigen::Quaternion<float> qt (rotation);
  qt.normalize ();
	    
  //Publish Marker for cluster
  visualization_msgs::Marker marker;	
		
  marker.header.frame_id = base_frame_;
  marker.header.stamp = ros::Time().now();
  marker.ns = "Perception";
  marker.action = visualization_msgs::Marker::ADD;
  marker.id = marker_id;	
  marker.lifetime = ros::Duration(1);	
		
  //centroid position
  marker.type = visualization_msgs::Marker::SPHERE;
  marker.pose.position.x = centroid[0];
  marker.pose.position.y = centroid[1];
  marker.pose.position.z = centroid[2];	
  marker.pose.orientation.x = qt.x();
  marker.pose.orientation.y = qt.y();
  marker.pose.orientation.z = qt.z();
  marker.pose.orientation.w = qt.w();			

  //std::cout << "e1: " << evals(0) << " e2: " << evals(1) << " e3: " << evals(2) << std::endl;

  marker.scale.x = sqrt(evals(0)) * 4;
  marker.scale.y = sqrt(evals(1)) * 4;
  marker.scale.z = sqrt(evals(2)) * 4;
	

  //give it some color!
  marker.color.a = 0.75;
  satToRGB(marker.color.r, marker.color.g, marker.color.b);

  //std::cout << "marker being published" << std::endl;

  return marker;
}
开发者ID:rbaldwin7,项目名称:rhocode,代码行数:58,代码来源:sat_detector_3d_monitor.cpp

示例2: fuzzyAffines

void fuzzyAffines()
{
    std::vector<Eigen::Matrix4f> trans;
    trans.reserve(count/10);
    for( size_t i=0; i<count/10; i++ )
    {
        Eigen::Vector3f x = Eigen::Vector3f::Random();
        Eigen::Vector3f y = Eigen::Vector3f::Random();

        x.normalize();
        y.normalize();

        Eigen::Vector3f z = x.cross(y);
        z.normalize();

        y = z.cross(x);
        y.normalize();

        Eigen::Affine3f t = Eigen::Affine3f::Identity();
        Eigen::Matrix3f r = Eigen::Matrix3f::Identity();

        r.col(0) = x;
        r.col(1) = y;
        r.col(2) = z;

        t.rotate(r);
        t.translate( 0.5f * Eigen::Vector3f::Random() + Eigen::Vector3f(0.5,0.5,0.5) );

        trans.push_back( t.matrix() );
    }

    s_plot.setColor( Eigen::Vector4f(1,0,0,1) );
    s_plot.setLineWidth( 3.0 );
    s_plot( trans, nox::plot<float>::Pos | nox::plot<float>::CS );
}
开发者ID:xalpha,项目名称:nox,代码行数:35,代码来源:test_plot.cpp

示例3: cloud_temp

void SQ_fitter<PointT>::getBoundingBox(const PointCloudPtr &_cloud,
				       double _dim[3],
				       double _trans[3],
				       double _rot[3] ) {

  // 1. Compute the bounding box center
  Eigen::Vector4d centroid;
  pcl::compute3DCentroid( *_cloud, centroid );
  _trans[0] = centroid(0);
  _trans[1] = centroid(1); 
  _trans[2] = centroid(2);

  // 2. Compute main axis orientations
  pcl::PCA<PointT> pca;
  pca.setInputCloud( _cloud );
  Eigen::Vector3f eigVal = pca.getEigenValues();
  Eigen::Matrix3f eigVec = pca.getEigenVectors();
  // Make sure 3 vectors are normal w.r.t. each other
  Eigen::Vector3f temp;
  eigVec.col(2) = eigVec.col(0); // Z
  Eigen::Vector3f v3 = (eigVec.col(1)).cross( eigVec.col(2) );
  eigVec.col(0) = v3;
  Eigen::Vector3f rpy = eigVec.eulerAngles(2,1,0);
 
  _rot[0] = (double)rpy(2);
  _rot[1] = (double)rpy(1);
  _rot[2] = (double)rpy(0);

  // Transform _cloud
  Eigen::Matrix4f transf = Eigen::Matrix4f::Identity();
  transf.block(0,3,3,1) << (float)centroid(0), (float)centroid(1), (float)centroid(2);
  transf.block(0,0,3,3) = eigVec;

  Eigen::Matrix4f tinv; tinv = transf.inverse();
  PointCloudPtr cloud_temp( new pcl::PointCloud<PointT>() );
  pcl::transformPointCloud( *_cloud, *cloud_temp, tinv );

  // Get maximum and minimum
  PointT minPt; PointT maxPt;
  pcl::getMinMax3D( *cloud_temp, minPt, maxPt );
  
  _dim[0] = ( maxPt.x - minPt.x ) / 2.0;
  _dim[1] = ( maxPt.y - minPt.y ) / 2.0;
  _dim[2] = ( maxPt.z - minPt.z ) / 2.0;

}
开发者ID:LongfeiProjects,项目名称:GSoC_PCL,代码行数:46,代码来源:SQ_fitter.hpp

示例4: qfinal

void
drawBoundingBox(PointCloudT::Ptr cloud,
				boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer,
				int z)
{
	
	//Eigen::Vector4f centroid;
	pcl::compute3DCentroid(*cloud, centroid);
	
	//Eigen::Matrix3f covariance;
	computeCovarianceMatrixNormalized(*cloud, centroid, covariance);
	//Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigen_solver(covariance,
	//Eigen::ComputeEigenvectors);

	eigen_solver.compute(covariance,Eigen::ComputeEigenvectors);
	
//	eigen_solver = boost::shared_ptr<Eigen::SelfAdjointEigenSolver>
//		(covariance,Eigen::ComputeEigenvectors);

	eigDx = eigen_solver.eigenvectors();
    eigDx.col(2) = eigDx.col(0).cross(eigDx.col(1));


	//Eigen::Matrix4f p2w(Eigen::Matrix4f::Identity());
	p2w.block<3,3>(0,0) = eigDx.transpose();
	p2w.block<3,1>(0,3) = -1.f * (p2w.block<3,3>(0,0) * centroid.head<3>());
    //pcl::PointCloud<PointT> cPoints;
    pcl::transformPointCloud(*cloud, cPoints, p2w);


	//PointT min_pt, max_pt;
    pcl::getMinMax3D(cPoints, min_pt, max_pt);
    const Eigen::Vector3f mean_diag = 0.5f*(max_pt.getVector3fMap() + min_pt.getVector3fMap());

	const Eigen::Quaternionf qfinal(eigDx);
    const Eigen::Vector3f tfinal = eigDx*mean_diag + centroid.head<3>();
	
	//viewer->addPointCloud(cloud);
	viewer->addCube(tfinal, qfinal, max_pt.x - min_pt.x, max_pt.y - min_pt.y, max_pt.z - min_pt.z,boost::lexical_cast<std::string>((z+1)*200));

}
开发者ID:mohit-1512,项目名称:Object-Identification,代码行数:41,代码来源:realtime.cpp

示例5: isOrthographic

bool Utils::
factorViewMatrix(const Eigen::Projective3f& iMatrix,
                 Eigen::Matrix3f& oCalib, Eigen::Isometry3f& oPose,
                 bool& oIsOrthographic) {
  oIsOrthographic = isOrthographic(iMatrix.matrix());

  // get appropriate rows
  std::vector<int> rows = {0,1,2};
  if (!oIsOrthographic) rows[2] = 3;

  // get A matrix (upper left 3x3) and t vector
  Eigen::Matrix3f A;
  Eigen::Vector3f t;
  for (int i = 0; i < 3; ++i) {
    for (int j = 0; j < 3; ++j) {
      A(i,j) = iMatrix(rows[i],j);
    }
    t[i] = iMatrix(rows[i],3);
  }

  // determine translation vector
  oPose.setIdentity();
  oPose.translation() = -(A.inverse()*t);

  // determine calibration matrix
  Eigen::Matrix3f AAtrans = A*A.transpose();
  AAtrans.col(0).swap(AAtrans.col(2));
  AAtrans.row(0).swap(AAtrans.row(2));
  Eigen::LLT<Eigen::Matrix3f, Eigen::Upper> llt(AAtrans);
  oCalib = llt.matrixU();
  oCalib.col(0).swap(oCalib.col(2));
  oCalib.row(0).swap(oCalib.row(2));
  oCalib.transposeInPlace();

  // compute rotation matrix
  oPose.linear() = (oCalib.inverse()*A).transpose();

  return true;
}
开发者ID:Gastd,项目名称:oh-distro,代码行数:39,代码来源:Utils.cpp

示例6: ComputeDarbouxVector

bool PositionBasedElasticRod::ComputeDarbouxVector(const Eigen::Matrix3f& dA, const Eigen::Matrix3f& dB, const float mid_edge_length, Eigen::Vector3f& darboux_vector)
{

	float factor = 1.0f + dA.col(0).dot(dB.col(0)) + dA.col(1).dot(dB.col(1)) + dA.col(2).dot(dB.col(2));

	factor = 2.0f / (mid_edge_length * factor);

	for (int c = 0; c < 3; ++c)
	{
		const int i = permutation[c][0];
		const int j = permutation[c][1];
		const int k = permutation[c][2];

		darboux_vector[i] = dA.col(j).dot(dB.col(k)) - dA.col(k).dot(dB.col(j));
	}

	darboux_vector *= factor;
	return true;
}
开发者ID:korzen,项目名称:PositionBasedDynamics-ElasticRod,代码行数:19,代码来源:PositionBasedElasticRod.cpp

示例7: find_toy_block

bool ObjectFinder::find_toy_block(float surface_height, geometry_msgs::PoseStamped &object_pose) {
    Eigen::Vector3f plane_normal;
    double plane_dist;
    //bool valid_plane;
    Eigen::Vector3f major_axis;
    Eigen::Vector3f centroid;
    bool found_object = true; //should verify this
    double block_height = 0.035; //this height is specific to the TOY_BLOCK model
    //if insufficient points in plane, find_plane_fit returns "false"
    //should do more sanity testing on found_object status
    //hard-coded search bounds based on a block of width 0.035
    found_object = pclUtils_.find_plane_fit(0.4, 1, -0.5, 0.5, surface_height + 0.025, surface_height + 0.045, 0.001,
            plane_normal, plane_dist, major_axis, centroid);
    //should have put a return value on find_plane_fit;
    //
    if (plane_normal(2) < 0) plane_normal(2) *= -1.0; //in world frame, normal must point UP
    Eigen::Matrix3f R;
    Eigen::Vector3f y_vec;
    R.col(0) = major_axis;
    R.col(2) = plane_normal;
    R.col(1) = plane_normal.cross(major_axis);
    Eigen::Quaternionf quat(R);
    object_pose.header.frame_id = "base_link";
    object_pose.pose.position.x = centroid(0);
    object_pose.pose.position.y = centroid(1);
    //the TOY_BLOCK model has its origin in the middle of the block, not the top surface
    //so lower the block model origin by half the block height from upper surface
    object_pose.pose.position.z = centroid(2)-0.5*block_height;
    //create R from normal and major axis, then convert R to quaternion

    object_pose.pose.orientation.x = quat.x();
    object_pose.pose.orientation.y = quat.y();
    object_pose.pose.orientation.z = quat.z();
    object_pose.pose.orientation.w = quat.w();
    return found_object;
}
开发者ID:TuZZiX,项目名称:ros_workspace,代码行数:36,代码来源:object_finder_as.cpp

示例8: ComputeMaterialFrame

// ----------------------------------------------------------------------------------------------
bool PositionBasedElasticRod::ComputeMaterialFrame(
	const Eigen::Vector3f& pA, 
	const Eigen::Vector3f& pB, 
	const Eigen::Vector3f& pG, 
	Eigen::Matrix3f& frame)
{

	frame.col(2) = (pB - pA);
	frame.col(2).normalize();

	frame.col(1) = (frame.col(2).cross(pG - pA));
	frame.col(1).normalize();

	frame.col(0) = frame.col(1).cross(frame.col(2));
//	frame.col(0).normalize();
	return true;
}
开发者ID:korzen,项目名称:PositionBasedDynamics-ElasticRod,代码行数:18,代码来源:PositionBasedElasticRod.cpp

示例9: main

int main(int argc, char** argv) {

    ros::init(argc, argv, "eigen_test");
    ros::NodeHandle nh_jntPub; // node handle for joint command publisher

 //   ros::Publisher pub_joint_commands; //
//    pub_joint_commands = nh_jntPub.advertise<atlas_msgs::AtlasCommand>("/atlas/atlas_command", 1, true); 
    
    ROS_INFO("test eigen program");
    
    Eigen::Matrix3f A;
    Eigen::Vector3f b;
    A << 1,2,3, 4,5,6, 7,8,10;
    
    A(1,2)=0; // how to access one element of matrix; start from 0; no warning out of range...
    
 
    b << 3,3,4;
    std::cout <<"b = "<<b <<std::endl;   
    
    // column operaton: replace first column of A with vector b:
    A.col(0)= b;  // could copy columns of matrices w/ A.col(0) = B.col(0);
    
    std::cout <<"A = "<<A <<std::endl;

    Eigen::MatrixXd mat1 = Eigen::MatrixXd::Zero(6, 6); //6x6 matrix full of zeros
    Eigen::MatrixXd mat2 = Eigen::MatrixXd::Identity(6, 6); //6x6 identity matrix  

    std::cout<<mat1<<std::endl;
    std::cout<<mat2<<std::endl;

    Eigen::Vector3f xtest = A.colPivHouseholderQr().solve(b);
    std::cout<<"soln xtest = "<<xtest<<std::endl;
    
    Eigen::Vector3f x = A.partialPivLu().solve(b); //dec.solve(b); //A.colPivHouseholderQr().solve(b);
    std::cout<<"soln x = "<<x<<std::endl;
    
    Eigen::Vector3f btest = A*x;
    std::cout<<"test soln: A*x = " <<btest<<std::endl;
    
    //extend to 6x6 test: v = M*z, find z using 2 methods
    // use double-precision matrices/vectors
    Eigen::MatrixXd M = Eigen::MatrixXd::Random(6,6);

    std::cout<<"test 6x6: M = "<<M<<std::endl;
    Eigen::VectorXd v(6);   
    v << 1,2,3,4,5,6;
    std::cout<<"v = "<<v<<std::endl;
    Eigen::VectorXd z(6); 
    Eigen::VectorXd ztest(6);   
    ztest = M.colPivHouseholderQr().solve(v);
    std::cout<<"soln ztest = "<<ztest<<std::endl;
    z = M.partialPivLu().solve(v);   
    std::cout<<"soln 6x6: z = "<<z<<std::endl;
    Eigen::VectorXd vtest(6);
    vtest = M*z;
    std::cout<<"test soln: M*z = "<<vtest<<std::endl;

    // .norm() operator...
    double relative_error = (M*z - v).norm() / v.norm(); // norm() is L2 norm
    std::cout << "The relative error is:\n" << relative_error << std::endl;

    
    std::cout<<"dot prod, v, z: "<< v.dot(z)<<std::endl;
    std::cout<<"cross prod, b-cross-x: " << b.cross(x)<<std::endl;
    
    
    
    return 0;
}
开发者ID:eetuna,项目名称:wsn_ros_docs,代码行数:70,代码来源:test_eigen.cpp

示例10: main


//.........这里部分代码省略.........
//Erzeugen einer Ebene aus Cluster_cloud
pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());
pcl::PointIndices::Ptr inliers (new pcl::PointIndices ());
pcl::SACSegmentation<pcl::PointXYZ> seg;
seg.setOptimizeCoefficients(true);
seg.setModelType(pcl::SACMODEL_PLANE);
seg.setMethodType(pcl::SAC_RANSAC);
seg.setMaxIterations(1000);
seg.setDistanceThreshold(0.1);
seg.setInputCloud(cluster_cloud);
seg.segment(*inliers, *coefficients);

// Wenn Ebene vertikal: Abspeichern in Cluster_i.pcd
if(coefficients->values[2]<.9 && coefficients->values[2]>(-.9))//ax+by+cz+d=0 (wenn c=0 => Ebene parallel zur z-Achse)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr planes_projected (new pcl::PointCloud<pcl::PointXYZ>);
//Inliers auf Ebene projizieren:
pcl::PCA<pcl::PointXYZ> pca2;
pcl::ProjectInliers<pcl::PointXYZ> proj2;
proj2.setModelType(pcl::SACMODEL_PLANE);
proj2.setIndices(inliers);
proj2.setInputCloud(cluster_cloud);
proj2.setModelCoefficients(coefficients);
proj2.filter(*planes_projected);

// Punkte in Eigenraum transformieren, um bounding box zu berechnen (Quelle: pcl-users Forum (http://www.pcl-users.org/Finding-oriented-bounding-box-of-a-cloud-td4024616.html)
// compute principal direction
Eigen::Vector4f centroid;
pcl::compute3DCentroid(*planes_projected, centroid);
Eigen::Matrix3f covariance;
computeCovarianceMatrixNormalized(*planes_projected, centroid, covariance);
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigen_solver(covariance, Eigen::ComputeEigenvectors);
Eigen::Matrix3f eigDx = eigen_solver.eigenvectors();
eigDx.col(2) = eigDx.col(0).cross(eigDx.col(1));

// move the points to the that reference frame
Eigen::Matrix4f p2w(Eigen::Matrix4f::Identity());
p2w.block<3,3>(0,0) = eigDx.transpose();
p2w.block<3,1>(0,3) = -1.f * (p2w.block<3,3>(0,0) * centroid.head<3>());
pcl::PointCloud<pcl::PointXYZ> cPoints;
pcl::transformPointCloud(*planes_projected, cPoints, p2w);
pcl::PointXYZ min_pt, max_pt;
pcl::getMinMax3D(cPoints, min_pt, max_pt);
const Eigen::Vector3f mean_diag = 0.5f*(max_pt.getVector3fMap() + min_pt.getVector3fMap());

// final transform
const Eigen::Quaternionf qfinal(eigDx);
const Eigen::Vector3f tfinal = eigDx*mean_diag + centroid.head<3>();

// Punktwolke und bounding box im viewer anzeigen
boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer);
viewer->addCoordinateSystem ();
viewer->addPointCloud(planes_projected);// Danach auskommentieren
viewer->addCube(tfinal, qfinal, max_pt.x - min_pt.x, max_pt.y - min_pt.y, max_pt.z - min_pt.z);


// Ausgabe der Eckpunkte (kann gelöscht werden)
std::cout << " min.x= " << min_pt.x << " max.x= " << max_pt.x << " min.y= " << min_pt.y << " max.y= " << max_pt.y << " min.z= " << min_pt.z << " max.z= " << max_pt.z<< std::endl;
std::cout << "Punkte: " << min_pt.x <<";" << min_pt.y << ";" << min_pt.z <<std::endl;
std::cout << min_pt.x <<";" << min_pt.y << ";" << max_pt.z <<std::endl;
std::cout << min_pt.x <<";" << max_pt.y << ";" << min_pt.z <<std::endl;
std::cout << min_pt.x <<";" << max_pt.y << ";" << max_pt.z <<std::endl;
std::cout << max_pt.x <<";" << min_pt.y << ";" << min_pt.z <<std::endl;
std::cout << max_pt.x <<";" << min_pt.y << ";" << max_pt.z <<std::endl;
std::cout << max_pt.x <<";" << max_pt.y << ";" << min_pt.z <<std::endl;
std::cout << max_pt.x <<";" << max_pt.y << ";" << max_pt.z <<std::endl;
开发者ID:rickfrey,项目名称:mapFilter,代码行数:67,代码来源:mapFilter.cpp

示例11: process

		int process(const tendrils& inputs, const tendrils& outputs,
					      boost::shared_ptr<const ::pcl::PointCloud<Point> >& input)
		{
      centers_->clear();
      centers_->resize(static_cast<std::size_t>(clusters_->size()));
      ::pcl::ExtractIndices<Point> filter;
      filter.setInputCloud(input);
      Eigen::Vector3f firstAxis;
      Eigen::Vector3f secondAxis;
      Eigen::Matrix3f frame;

      for(std::size_t i = 0; i < clusters_->size(); ++i)
      {
        if((*clusters_)[i].indices.size() == 0)
          continue;

        frame = (*frames_)[i];
        firstAxis = frame.col(0);
        secondAxis = frame.col(1);
        boost::shared_ptr< ::pcl::PointCloud<Point> > cloud;
        cloud = boost::make_shared< ::pcl::PointCloud<Point> > ();
        // extract indices into a cloud
        filter.setIndices( ::pcl::PointIndicesPtr(
        new ::pcl::PointIndices ((*clusters_)[i])) );
        filter.filter(*cloud);
        Eigen::Vector3f point(cloud->points[0].x, 
                              cloud->points[0].y, cloud->points[0].z);
        Eigen::Vector3f minPoint(cloud->points[0].x, 
                                 cloud->points[0].y, cloud->points[0].z);
        double firstMin = point.dot(firstAxis);
        double firstMax = point.dot(firstAxis);
        double secondMin = point.dot(secondAxis);
        double secondMax = point.dot(secondAxis);
        for(std::size_t p = 0; p < cloud->points.size(); ++p)
        {
          point = Eigen::Vector3f(cloud->points[p].x, 
                                  cloud->points[p].y, cloud->points[p].z);
          if(point.dot(firstAxis) > firstMax)
          {
            firstMax = point.dot(firstAxis);
          }
          if(point.dot(firstAxis) < firstMin)
          {
            firstMin = point.dot(firstAxis);
            minPoint.x() = point.x();
          }
          if(point.dot(secondAxis) > secondMax)
          {
            secondMax = point.dot(secondAxis);
          }
          if(point.dot(secondAxis) < secondMin)
          {
            secondMin = point.dot(secondAxis);
            minPoint.y() = point.y();
          }
        }  
        Eigen::Vector3f Center = minPoint + 
                             ((firstMax-firstMin)/2)*firstAxis + 
                             ((secondMax-secondMin)/2)*secondAxis;
        centers_->at(i) = Eigen::Vector4f(Center.x(), 
                                          Center.y(), 
                                          Center.z(), 
                                          0.0); 
      }
      
			return ecto::OK;
		}
开发者ID:stanislas-brossette,项目名称:cloud-treatment-ecto,代码行数:67,代码来源:stepcenteringcell.cpp

示例12: computeCovarianceMatrix

  void get3DMoments(vector<Point> feature_points, int feat_index, int index)
  {
    //    for(int i=0; i<feature_points.size(); i++)
    //   ROS_INFO("%d --> %d,%d",i,feature_points[i].x,feature_points[i].y);
    //ROS_INFO("Getting 3D Moments : %d --> %d,%d", feature_points.size(), width, height);
    
    //Extract the indices for the points in the point cloud data
    pcl::PointIndices point_indices;
     
    for(int i=0; i<feature_points.size(); i++)
      {
	//ROS_INFO("Feature Index : %d, %d",feature_points[i].x, feature_points[i].y);
	point_indices.indices.push_back(feature_points[i].y * width + feature_points[i].x);
      }
    
    //ROS_INFO("Computing 3D Centroid : %d",point_indices.indices.size());
    Eigen::Vector4f centroid;
    Eigen::Matrix3f covariance_matrix;
    
    // Estimate the XYZ centroid
    pcl::compute3DCentroid (pcl_in, point_indices, centroid); 
#ifdef DEBUG
    ROS_INFO("Centroid %d: %f, %f, %f, %f",index,centroid(0),centroid(1),centroid(2),centroid(3));
#endif

    //ROS_INFO("Computing Covariance ");
    //Compute the centroid and the covariance of the points
    computeCovarianceMatrix(pcl_in, point_indices.indices, centroid, covariance_matrix);
    
    //Print the 3D Moments
    //ROS_INFO("Centroid : %f, %f, %f, %f",centroid(0),centroid(1),centroid(2),centroid(3));
#ifdef DEBUG
    std::cout<<"Covariance : "<<std::endl<<covariance_matrix <<std::endl;
#endif

    for(int i=0; i<3; i++)
      {
	feedback_.features[feat_index].moments[index].mean[i] = centroid(i);
	for(int j=0; j<3; j++)
	  {
	    feedback_.features[feat_index].moments[index].covariance[i*3+j] = covariance_matrix(i,j);
	  }
      }

    //Get the principal components and the quaternion
    Eigen::Matrix3f evecs;
    Eigen::Vector3f evals;
    pcl::eigen33 (covariance_matrix, evecs, evals);
    
    Eigen::Matrix3f rotation;
    rotation.row (0) = evecs.col (0);
    rotation.row (1) = evecs.col (1);
    //rotation.row (2) = evecs.col (2);
    rotation.row (2) = rotation.row (0).cross (rotation.row (1));
    //rotation.transposeInPlace ();
#ifdef DEBUG
    std::cerr << "Rotation matrix: " << endl;
    std::cerr << rotation << endl;
    std::cout<<"Eigen vals : "<<evals<<std::endl;
#endif

    rotation.transposeInPlace ();
    Eigen::Quaternion<float> qt (rotation);
    qt.normalize ();

    //Publish Marker
    visualization_msgs::Marker marker;	
    
    marker.header.frame_id = "/openni_rgb_optical_frame";
    marker.header.stamp = ros::Time().now();
    marker.ns = "Triangulation";
    marker.id = index+1;	
    marker.action = visualization_msgs::Marker::ADD;
    marker.lifetime = ros::Duration(5);		
    
    //centroid position
    marker.type = visualization_msgs::Marker::SPHERE;
    
    
    marker.pose.position.x = centroid(0);
    marker.pose.position.y = centroid(1);
    marker.pose.position.z = centroid(2);	
    marker.pose.orientation.x = qt.x();
    marker.pose.orientation.y = qt.y();
    marker.pose.orientation.z = qt.z();
    marker.pose.orientation.w = qt.w();			
    
    marker.scale.x = sqrt(evals(0)) *2;
    marker.scale.y =  sqrt(evals(1)) *2;
    marker.scale.z =  sqrt(evals(2)) *2;
    
    //red
    marker.color.a = 0.5;
    marker.color.r = rand()/((double)RAND_MAX + 1);
    marker.color.g = rand()/((double)RAND_MAX + 1);
    marker.color.b = rand()/((double)RAND_MAX + 1);
    object_pose_marker_pub_.publish(marker);	
    
  }
开发者ID:rbaldwin7,项目名称:rhocode,代码行数:99,代码来源:hue_detector_3d_server.cpp

示例13: ComputeDarbouxGradient

bool PositionBasedElasticRod::ComputeDarbouxGradient(
	const Eigen::Vector3f& darboux_vector, const float length,
	const Eigen::Matrix3f& da, const Eigen::Matrix3f& db,
	//const Eigen::Matrix3f(*dajpi)[3], const Eigen::Matrix3f(*dbjpi)[3], 
	const Eigen::Matrix3f dajpi[3][3], const Eigen::Matrix3f dbjpi[3][3],
	const Eigen::Vector3f& bendAndTwistKs,
	Eigen::Matrix3f& omega_pa, Eigen::Matrix3f& omega_pb, Eigen::Matrix3f& omega_pc, Eigen::Matrix3f& omega_pd, Eigen::Matrix3f& omega_pe
	)
{


	//float x = 1.0f + da[0] * db[0] + da[1] * db[1] + da[2] * db[2];
	float x = 1.0f + da.col(0).dot(db.col(0)) + da.col(1).dot(db.col(1)) + da.col(2).dot(db.col(2));
	x = 2.0f / (length * x);

	for (int c = 0; c < 3; ++c) 
	{
		const int i = permutation[c][0];
		const int j = permutation[c][1];
		const int k = permutation[c][2];
		// pa
		{
			Eigen::Vector3f term1(0,0,0);
			Eigen::Vector3f term2(0,0,0);
			Eigen::Vector3f tmp(0,0,0);
			// first term
			//dj::MulVecMatrix3x3<real>(db[k](), (real(*)[3]) &dajpi[j][0], term1());
			//dj::MulVecMatrix3x3<real>(db[j](), (real(*)[3]) &dajpi[k][0], tmp());

			//DOUBLE CHECK !!!
			term1 = dajpi[j][0].transpose() * db.col(k);
			tmp =   dajpi[k][0].transpose() * db.col(j);
			term1 = term1 - tmp;
			// second term
			for (int n = 0; n < 3; ++n) 
			{
				//dj::MulVecMatrix3x3<real>(db[n](), (real(*)[3]) &dajpi[n][0], tmp());

				//DOUBLE CHECK !!!
				tmp = dajpi[n][0].transpose() * db.col(n);
				term2 = term2 + tmp;
			}
			omega_pa.col(i) = (term1)-(0.5f * darboux_vector[i] * length) * (term2);
			omega_pa.col(i) *= (x * bendAndTwistKs[i]);
		}
		// pb
		{
			Eigen::Vector3f term1(0, 0, 0);
			Eigen::Vector3f term2(0, 0, 0);
			Eigen::Vector3f tmp(0, 0, 0);
			// first term
			//dj::MulVecMatrix3x3<real>(db[k](), (real(*)[3]) &dajpi[j][1], term1());
			//dj::MulVecMatrix3x3<real>(db[j](), (real(*)[3]) &dajpi[k][1], tmp());
			term1 = dajpi[j][1].transpose() * db.col(k);
			tmp =   dajpi[k][1].transpose() * db.col(j);
			term1 = term1 - tmp;
			// third term
			//dj::MulVecMatrix3x3<real>(da[k](), (real(*)[3]) &dbjpi[j][0], tmp());
			tmp = dbjpi[j][0].transpose() * da.col(k);
			term1 = term1 - tmp;
			
			//dj::MulVecMatrix3x3<real>(da[j](), (real(*)[3]) &dbjpi[k][0], tmp());
			tmp = dbjpi[k][0].transpose() * da.col(j);
			term1 = term1 + tmp;

			// second term
			for (int n = 0; n < 3; ++n) 
			{
				//dj::MulVecMatrix3x3<real>(db[n](), (real(*)[3]) &dajpi[n][1], tmp());
				tmp = dajpi[n][1].transpose() * db.col(n);
				term2 = term2 + tmp;
				
				//dj::MulVecMatrix3x3<real>(da[n](), (real(*)[3]) &dbjpi[n][0], tmp());
				tmp = dbjpi[n][0].transpose() * da.col(n);
				term2 = term2 + tmp;
			}
			omega_pb.col(i) = (term1)-(0.5f * darboux_vector[i] * length) * (term2);
			omega_pb.col(i) *= (x * bendAndTwistKs[i]);
		}
		// pc
		{
			Eigen::Vector3f term1(0, 0, 0);
			Eigen::Vector3f term2(0, 0, 0);
			Eigen::Vector3f tmp(0, 0, 0);
			
			// first term
			//dj::MulVecMatrix3x3<real>(da[k](), (real(*)[3]) &dbjpi[j][1], term1());
			//dj::MulVecMatrix3x3<real>(da[j](), (real(*)[3]) &dbjpi[k][1], tmp());
			term1 = dbjpi[j][1].transpose() * da.col(k);
			tmp =   dbjpi[k][1].transpose() * da.col(j);
			term1 = term1 - tmp;

			// second term
			for (int n = 0; n < 3; ++n) 
			{
				//dj::MulVecMatrix3x3<real>(da[n](), (real(*)[3]) &dbjpi[n][1], tmp());
				tmp = dbjpi[n][1].transpose() * da.col(n);
				term2 = term2 + tmp;
			}
			omega_pc.col(i) = (term1)+(0.5f * darboux_vector[i] * length) * (term2);
//.........这里部分代码省略.........
开发者ID:korzen,项目名称:PositionBasedDynamics-ElasticRod,代码行数:101,代码来源:PositionBasedElasticRod.cpp

示例14: ComputeMaterialFrameDerivative

bool PositionBasedElasticRod::ComputeMaterialFrameDerivative(
	const Eigen::Vector3f& p0, const Eigen::Vector3f& p1, const Eigen::Vector3f& p2, const Eigen::Matrix3f& d,
	Eigen::Matrix3f& d1p0, Eigen::Matrix3f& d1p1, Eigen::Matrix3f& d1p2,
	Eigen::Matrix3f& d2p0, Eigen::Matrix3f& d2p1, Eigen::Matrix3f& d2p2,
	Eigen::Matrix3f& d3p0, Eigen::Matrix3f& d3p1, Eigen::Matrix3f& d3p2)
{

	// d3pi
	Eigen::Vector3f p01 = p1 - p0;
	float length_p01 = p01.norm();

	d3p0.col(0) = d.col(2)[0] * d.col(2);
	d3p0.col(1) = d.col(2)[1] * d.col(2);
	d3p0.col(2) = d.col(2)[2] * d.col(2);

	d3p0.col(0)[0] -= 1.0f;
	d3p0.col(1)[1] -= 1.0f;
	d3p0.col(2)[2] -= 1.0f;

	d3p0.col(0) *= (1.0f / length_p01);
	d3p0.col(1) *= (1.0f / length_p01);
	d3p0.col(2) *= (1.0f / length_p01);

	d3p1.col(0) = -d3p0.col(0);
	d3p1.col(1) = -d3p0.col(1);
	d3p1.col(2) = -d3p0.col(2);

	d3p2.col(0).setZero();
	d3p2.col(1).setZero();
	d3p2.col(2).setZero();

	////>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	//// d2pi
	Eigen::Vector3f p02 = p2 - p0;
	Eigen::Vector3f p01_cross_p02 = p01.cross(p02);

	float length_cross = p01_cross_p02.norm();

	Eigen::Matrix3f mat;
	mat.col(0) = d.col(1)[0] * d.col(1);
	mat.col(1) = d.col(1)[1] * d.col(1);
	mat.col(2) = d.col(1)[2] * d.col(1);

	mat.col(0)[0] -= 1.0f;
	mat.col(1)[1] -= 1.0f;
	mat.col(2)[2] -= 1.0f;

	mat.col(0) *= (-1.0f / length_cross);
	mat.col(1) *= (-1.0f / length_cross);
	mat.col(2) *= (-1.0f / length_cross);

	Eigen::Matrix3f product_matrix;
	MathFunctions::crossProductMatrix(p2 - p1, product_matrix);
	d2p0 = mat * product_matrix;

	MathFunctions::crossProductMatrix(p0 - p2, product_matrix);
	d2p1 = mat * product_matrix;

	MathFunctions::crossProductMatrix(p1 - p0, product_matrix);
	d2p2 = mat * product_matrix;

	////>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	//// d1pi
	Eigen::Matrix3f product_mat_d3;
	Eigen::Matrix3f product_mat_d2;
	Eigen::Matrix3f m1, m2;

	MathFunctions::crossProductMatrix(d.col(2), product_mat_d3);
	MathFunctions::crossProductMatrix(d.col(1), product_mat_d2);

	//dj::MulMatrix3x3<real>(&product_mat_d3[0][0], &d2p0[0][0], &m1[0][0]);
	//dj::MulMatrix3x3<real>(&product_mat_d2[0][0], &d3p0[0][0], &m2[0][0]);
	d1p0 = product_mat_d2 * d3p0 - product_mat_d3 * d2p0;

	//dj::MulMatrix3x3<real>(&product_mat_d3[0][0], &d2p1[0][0], &m1[0][0]);
	//dj::MulMatrix3x3<real>(&product_mat_d2[0][0], &d3p1[0][0], &m2[0][0]);
	d1p1 = product_mat_d2 * d3p1 - product_mat_d3 * d2p1;

	/*dj::MulMatrix3x3<real>(&product_mat_d3[0][0], &d2p2[0][0], &d1p2[0][0]);*/
	d1p2 = product_mat_d3 * d2p2;
	d1p2.col(0) *= -1.0f;
	d1p2.col(1) *= -1.0f;
	d1p2.col(2) *= -1.0f;
	return true;
}
开发者ID:korzen,项目名称:PositionBasedDynamics-ElasticRod,代码行数:85,代码来源:PositionBasedElasticRod.cpp

示例15: computeCube

        }
    }
    return corr;
}
//--------------------------------------------------------------------------------------------------------------
//Pose estimation tools
void computeCube(Eigen::Vector3f& tfinal,  Eigen::Quaternionf& qfinal_r, pcl::PointCloud<PointN>::Ptr final, float& _x, float& _y, float& _z) {
    Eigen::Vector4f centroid;
    pcl::compute3DCentroid(*final, centroid);
    std::cout << "centroid: \n" << centroid[0] << " " << centroid[1] << " " << centroid[2]<< std::endl;

    Eigen::Matrix3f covariance;
    computeCovarianceMatrixNormalized(*final, centroid, covariance);
    Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigen_solver(covariance, Eigen::ComputeEigenvectors);
    Eigen::Matrix3f eigDx = eigen_solver.eigenvectors();
    eigDx.col(2) = eigDx.col(0).cross(eigDx.col(1));

    // move the points to the that reference frame
    Eigen::Matrix4f p2w(Eigen::Matrix4f::Identity());
    p2w.block<3,3>(0,0) = eigDx.transpose();
    p2w.block<3,1>(0,3) = -1.f * (p2w.block<3,3>(0,0) * centroid.head<3>());
    pcl::PointCloud<PointN> cPoints;
    pcl::transformPointCloud(*final, cPoints, p2w);
    PointN min_pt, max_pt;
    pcl::getMinMax3D(cPoints, min_pt, max_pt);
    const Eigen::Vector3f mean_diag = 0.5f*(max_pt.getVector3fMap() + min_pt.getVector3fMap());
    // final transform

    const Eigen::Quaternionf qfinal(eigDx);

    tfinal = eigDx*mean_diag + centroid.head<3>();
开发者ID:Birkehoj,项目名称:vis3,代码行数:31,代码来源:computeFeatures.hpp


注:本文中的eigen::Matrix3f::col方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。