本文整理汇总了C++中eigen::Matrix3d::cols方法的典型用法代码示例。如果您正苦于以下问题:C++ Matrix3d::cols方法的具体用法?C++ Matrix3d::cols怎么用?C++ Matrix3d::cols使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类eigen::Matrix3d
的用法示例。
在下文中一共展示了Matrix3d::cols方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: process
void EKFOA::process(const double delta_t, cv::Mat & frame, Eigen::Vector3d & rW, Eigen::Vector4d & qWR, Eigen::Matrix3d & axes_orientation_and_confidence, std::vector<Point3d> (& XYZs)[3], Delaunay & triangulation, Point3d & closest_point){
double time_total;
std::vector<cv::Point2f> features_to_add;
std::vector<Features_extra> features_extra;
/*
* EKF prediction (state and measurement prediction)
*/
time_total = (double)cv::getTickCount();
double time_prediction = (double)cv::getTickCount();
filter.predict_state_and_covariance(delta_t);
filter.compute_features_h(cam, features_extra);
time_prediction = (double)cv::getTickCount() - time_prediction;
// std::cout << "predict = " << time_prediction/((double)cvGetTickFrequency()*1000.) << "ms" << std::endl;
/*
* Sense and map management (delete features from EKF)
*/
double time_tracker = (double)cv::getTickCount();
motion_tracker.process(frame, features_extra, features_to_add);
//TODO: Why is optical flow returning points outside the image???
time_tracker = (double)cv::getTickCount() - time_tracker;
time_total = time_total + time_tracker; //do not count the time spent by the tracker
//Delete no longer seen features from the state, covariance matrix and the features_extra:
double time_del = (double)cv::getTickCount();
filter.delete_features(features_extra);
time_del = (double)cv::getTickCount() - time_del;
// std::cout << "delete = " << time_del/((double)cvGetTickFrequency()*1000.) << "ms" << std::endl;
/*
* EKF Update step and map management (add new features to EKF)
*/
double time_update = (double)cv::getTickCount();
filter.update(cam, features_extra);
time_update = (double)cv::getTickCount() - time_update;
// std::cout << "update = " << time_update/((double)cvGetTickFrequency()*1000.) << "ms" << std::endl;
//Add new features
double time_add = (double)cv::getTickCount();
filter.add_features_inverse_depth(cam, features_to_add);
time_add = (double)cv::getTickCount() - time_add;
// std::cout << "add_fea = " << time_add/((double)cvGetTickFrequency()*1000.) << "ms" << std::endl;
/*
* Triangulation, surface and GUI data setting:
*/
double time_triangulation = (double)cv::getTickCount();
std::vector< std::pair<Point2d, size_t> > triangle_list;
std::list<Triangle> triangles_list_3d;
const Eigen::VectorXd & x_k_k = filter.x_k_k();
const Eigen::MatrixXd & p_k_k = filter.p_k_k();
//Set the position, so the GUI can draw it:
rW = x_k_k.segment<3>(0);//current position
//Set the axes orientation and confidence:
axes_orientation_and_confidence.setIdentity();//axes_orientation_and_confidence stores in each column one axis (X, Y, Z)
axes_orientation_and_confidence *= 5; //make the lines larger, so they are actually informative
//Apply rotation matrix:
Eigen::Matrix3d qWR_R;//Rotation matrix of current orientation quaternion
qWR = x_k_k.segment<4>(3);
MotionModel::quaternion_matrix(qWR, qWR_R);
axes_orientation_and_confidence.applyOnTheLeft(qWR_R); // == R * axes_orientation_and_confidence
for (int axis=0 ; axis<axes_orientation_and_confidence.cols() ; axis++){
//Set the length to be 3*sigma:
axes_orientation_and_confidence.col(axis) *= 3*std::sqrt(p_k_k(axis, axis)); //the first 3 positions of the cov matrix define the confidence for the position
//Translate origin:
axes_orientation_and_confidence.col(axis) += rW;
}
int num_features = (x_k_k.rows()-13)/6;
XYZs[0].resize(num_features);
XYZs[1].resize(num_features);
XYZs[2].resize(num_features);
//Compute the 3d positions and inverse depth variances of all the points in the state
int i=0; //Feature counter
for (int start_feature=13 ; start_feature<x_k_k.rows() ; start_feature+=6){
const int feature_inv_depth_index = start_feature + 5;
//As with any normal distribution, nearly all (99.73%) of the possible depths lie within three standard deviations of the mean!
const double sigma_3 = std::sqrt(p_k_k(feature_inv_depth_index, feature_inv_depth_index)); //sqrt(depth_variance)
const Eigen::VectorXd & yi = x_k_k.segment(start_feature, 6);
Eigen::VectorXd point_close(x_k_k.segment(start_feature, 6));
Eigen::VectorXd point_far(x_k_k.segment(start_feature, 6));
//Change the depth of the feature copy, so that it is possible to represent the range between -3*sigma and 3*sigma:
point_close(5) += sigma_3;
point_far(5) -= sigma_3;
Eigen::Vector3d XYZ_mu = (Feature::compute_cartesian(yi)); //mu (mean)
Eigen::Vector3d XYZ_close = (Feature::compute_cartesian(point_close)); //mean + 3*sigma. (since inverted signs are also inverted)
//.........这里部分代码省略.........
示例2: M
void
opengv::absolute_pose::modules::gp3p_main(
const Eigen::Matrix3d & f,
const Eigen::Matrix3d & v,
const Eigen::Matrix3d & p,
transformations_t & solutions)
{
Eigen::Matrix<double,48,85> groebnerMatrix =
Eigen::Matrix<double,48,85>::Zero();
gp3p::init(groebnerMatrix,f,v,p);
gp3p::compute(groebnerMatrix);
Eigen::Matrix<double,8,8> M = Eigen::Matrix<double,8,8>::Zero();
M.block<6,8>(0,0) = -groebnerMatrix.block<6,8>(36,77);
M(6,0) = 1.0;
M(7,6) = 1.0;
Eigen::ComplexEigenSolver< Eigen::Matrix<double,8,8> > Eig(M,true);
Eigen::Matrix<std::complex<double>,8,1> D = Eig.eigenvalues();
Eigen::Matrix<std::complex<double>,8,8> V = Eig.eigenvectors();
for( int c = 0; c < V.cols(); c++ )
{
std::complex<double> eigValue = D[c];
if( eigValue.imag() < 0.0001 )
{
cayley_t cayley;
Eigen::Vector3d n;
for(size_t i = 0; i < 3; i++)
{
std::complex<double> cay = V(i+4,c)/V(7,c);
cayley[2-i] = cay.real();
std::complex<double> depth = V(i+1,c)/V(7,c);
n[2-i] = depth.real();
}
rotation_t rotation = math::cayley2rot(cayley);
//the groebner problem was set up to find the transpose!
rotation.transposeInPlace();
point_t center_cam = Eigen::Vector3d::Zero();
point_t center_world = Eigen::Vector3d::Zero();
for( size_t i = 0; i < (size_t) f.cols(); i++ )
{
point_t temp = rotation*(n[i]*f.col(i)+v.col(i));
center_cam = center_cam + temp;
center_world = center_world + p.col(i);
}
center_cam = center_cam/f.cols();
center_world = center_world/f.cols();
translation_t translation = center_world - center_cam;
transformation_t transformation;
transformation.block<3,3>(0,0) = rotation;
transformation.col(3) = translation;
solutions.push_back(transformation);
}
}
}