当前位置: 首页>>代码示例>>C++>>正文


C++ Matrix3d::col方法代码示例

本文整理汇总了C++中eigen::Matrix3d::col方法的典型用法代码示例。如果您正苦于以下问题:C++ Matrix3d::col方法的具体用法?C++ Matrix3d::col怎么用?C++ Matrix3d::col使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在eigen::Matrix3d的用法示例。


在下文中一共展示了Matrix3d::col方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: assert

opengv::transformations_t
opengv::absolute_pose::gp3p(
    const AbsoluteAdapterBase & adapter,
    const std::vector<int> & indices )
{
  assert(indices.size()>2);

  Eigen::Matrix3d f;
  Eigen::Matrix3d v;
  Eigen::Matrix3d p;

  for(size_t i = 0; i < 3; i++)
  {
    f.col(i) = adapter.getBearingVector(indices[i]);
    rotation_t R = adapter.getCamRotation(indices[i]);
    //unrotate the bearingVectors already so the camera rotation doesn't appear
    //in the problem
    f.col(i) = R * f.col(i);
    v.col(i) = adapter.getCamOffset(indices[i]);
    p.col(i) = adapter.getPoint(indices[i]);
  }

  transformations_t solutions;

  modules::gp3p_main(f,v,p,solutions);
  return solutions;
}
开发者ID:Hankyaku,项目名称:opengv,代码行数:27,代码来源:methods.cpp

示例2: svd

void mrpt::vision::pnp::rpnp::calcampose(Eigen::MatrixXd& XXc, Eigen::MatrixXd& XXw, Eigen::Matrix3d& R2, Eigen::Vector3d& t2)
{
	Eigen::MatrixXd X = XXc;
	Eigen::MatrixXd Y = XXw;
	Eigen::MatrixXd K = Eigen::MatrixXd::Identity(n, n) - Eigen::MatrixXd::Ones(n, n) * 1 / n;
	Eigen::VectorXd ux, uy;
	uy = X.rowwise().mean();
	ux = Y.rowwise().mean();

	// Need to verify sigmax2
	double sigmax2 = (((X*K).array() * (X*K).array()).colwise().sum()).mean();

	Eigen::MatrixXd SXY = Y*K*(X.transpose()) / n;

	Eigen::JacobiSVD<Eigen::MatrixXd> svd(SXY, Eigen::ComputeThinU | Eigen::ComputeThinV);

	Eigen::Matrix3d S = Eigen::MatrixXd::Identity(3, 3);
	if (SXY.determinant() <0)
		S(2, 2) = -1;

	R2 = svd.matrixV()*S*svd.matrixU().transpose();

	double c2 = (svd.singularValues().asDiagonal()*S).trace() / sigmax2;
	t2 = uy - c2*R2*ux;
	 
	Eigen::Vector3d x, y, z;
	x = R2.col(0);
	y = R2.col(1);
	z = R2.col(2);

	if ((x.cross(y) - z).norm()>0.02)
		R2.col(2) = -R2.col(2);
}
开发者ID:mangi020,项目名称:mrpt,代码行数:33,代码来源:rpnp.cpp

示例3: tangent_and_bitangent

void tangent_and_bitangent(const Eigen::Vector3d & n_,
    Eigen::Vector3d & t_, Eigen::Vector3d & b_)
{
  double rmin = 0.99;
  double n0 = n_(0), n1 = n_(1), n2 = n_(2);
  if (std::abs(n0) <= rmin) {
    rmin = std::abs(n0);
    t_(0) = 0.0;
    t_(1) = - n2 / std::sqrt(1.0 - std::pow(n0, 2));
    t_(2) =   n1 / std::sqrt(1.0 - std::pow(n0, 2));
  }
  if (std::abs(n1) <= rmin) {
    rmin = std::abs(n1);
    t_(0) =   n2 / std::sqrt(1.0 - std::pow(n1, 2));
    t_(1) =   0.0;
    t_(2) = - n0 / std::sqrt(1.0 - std::pow(n1, 2));
  }
  if (std::abs(n2) <= rmin) {
    rmin = std::abs(n2);
    t_(0) =  n1 / std::sqrt(1.0 - std::pow(n2, 2));
    t_(1) = -n0 / std::sqrt(1.0 - std::pow(n2, 2));
    t_(2) =  0.0;
  }
  b_ = n_.cross(t_);
  // Check that the calculated Frenet-Serret frame is left-handed (levogiro)
  // by checking that the determinant of the matrix whose columns are the normal,
  // tangent and bitangent vectors has determinant 1 (the system is orthonormal!)
  Eigen::Matrix3d M;
  M.col(0) = n_;
  M.col(1) = t_;
  M.col(2) = b_;
  if (boost::math::sign(M.determinant()) != 1) {
    PCMSOLVER_ERROR("Frenet-Serret local frame is not left-handed!", BOOST_CURRENT_FUNCTION);
  }
}
开发者ID:runesorland,项目名称:pcmsolver,代码行数:35,代码来源:Element.cpp

示例4: createRotationMatrix

    /*
     * Creates a rotation matrix which describes how a point in an auxiliary
     * coordinate system, whose x axis is desbibed by vec_along_x_axis and has
     * a point on its xz-plane vec_on_xz_plane, rotates into the real coordinate
     * system.
     */
    void Cornea::createRotationMatrix(const Eigen::Vector3d &vec_along_x_axis,
                                      const Eigen::Vector3d &vec_on_xz_plane,
                                      Eigen::Matrix3d &R) {

        // normalise pw
        Eigen::Vector3d vec_on_xz_plane_n = vec_on_xz_plane.normalized();

        // define helper variables x, y and z
        // x
        Eigen::Vector3d xn = vec_along_x_axis.normalized();

        // y
        Eigen::Vector3d tmp = vec_on_xz_plane_n.cross(xn);
        Eigen::Vector3d yn = tmp.normalized();

        // z
        tmp = xn.cross(yn);
        Eigen::Vector3d zn = tmp.normalized();

        // create the rotation matrix
        R.col(0) << xn(0), xn(1), xn(2);
        R.col(1) << yn(0), yn(1), yn(2);
        R.col(2) << zn(0), zn(1), zn(2);

    }
开发者ID:bwrc,项目名称:gaze_tracker_glasses,代码行数:31,代码来源:Cornea_computer.cpp

示例5: Quaterniond

Eigen::Quaterniond mesh_core::PlaneProjection::getOrientation() const
{
  Eigen::Matrix3d m;
  m.col(0) = x_axis_;
  m.col(1) = y_axis_;
  m.col(2) = normal_;
  return Eigen::Quaterniond(m);
}
开发者ID:team-vigir,项目名称:vigir_moveit_advanced,代码行数:8,代码来源:geom.cpp

示例6:

Eigen::Matrix3d Reaching::reorderHandAxes(const Eigen::Matrix3d& Q)
{
  Eigen::Matrix3d R = Eigen::MatrixXd::Zero(3, 3);
  R.col(params_.axis_order_[0]) = Q.col(0); // grasp approach vector
  R.col(params_.axis_order_[1]) = Q.col(1); // hand axis
  R.col(params_.axis_order_[2]) = Q.col(2); // hand binormal
  return R;
}
开发者ID:atenpas,项目名称:grasp_selection,代码行数:8,代码来源:reaching.cpp

示例7: A

void Reconstruction3D::RQdecomposition(Eigen::MatrixXd A, Eigen::Matrix3d &R, Eigen::Matrix3d &Q)
{
	float c, s;
	Eigen::Matrix3d Qx, Qy, Qz;
	Eigen::Matrix3d M;
	M << A(0, 0), A(0, 1), A(0, 2),
		A(1, 0), A(1, 1), A(1, 2),
		A(2, 0), A(2, 1), A(2, 2);

	R = M;
	Reconstruction3D::solveCS(c, s, R(2, 1), R(2, 2));
	Qx << 1, 0, 0,
		0, c, -s,
		0, s, c;
	R *= Qx;

	Reconstruction3D::solveCS(c, s, R(2, 0), -R(2, 2));
	Qy << c, 0, s,
		0, 1, 0,
		-s, 0, c;
	R *= Qy;

	Reconstruction3D::solveCS(c, s, R(1, 0), R(1, 1));
	Qz << c, -s, 0,
		s, c, 0,
		0, 0, 1;
	R *= Qz;

	if (std::abs(R(1, 0)) > 0.00005 || std::abs(R(2, 0)) > 0.00005 || std::abs(R(2, 1)) > 0.00005)
		std::cerr << "PROBLEM WITH RQdecomposition" << std::endl;;

	//    if(R(1,0)!= 0) R(1,0) = 0;
	//    if(R(2,0)!= 0) R(2,0) = 0;
	//    if(R(2,1)!= 0) R(2,1) = 0;


	Q = Qz.transpose()  * Qy.transpose() * Qx.transpose();

	if (R(0, 0) < 0)
	{
		R.col(0) *= -1;
		Q.row(0) *= -1;
	}
	if (R(1, 1) < 0)
	{
		R.col(1) *= -1;
		Q.row(1) *= -1;
	}
	if (R(2, 2) < 0)
	{
		R.col(2) *= -1;
		Q.row(2) *= -1;
	}
}
开发者ID:diegomazala,项目名称:Homography,代码行数:54,代码来源:Reconstruction3D.cpp

示例8: determinantCorrection

bool determinantCorrection(Eigen::Matrix3d &Rot)
{
    double det1 = Rot.determinant();
    if( det1 < -0.9999999 && det1 > -1.0000001 )
    {
        // When a rotation matrix is a reflection because its determinant is -1
        Rot.col(2) = -1.0*Rot.col(2); // Corrects the third column sign
        std::cout << "Rotation matrix has det = -1, correct procedure to achieve det = 1\n";
        return true;
    }
    return false;
}
开发者ID:josetascon,项目名称:mop,代码行数:12,代码来源:CameraPose.cpp

示例9:

/* most relevant */
Eigen::Matrix3d MerryMotionplanner::compute_orientation(Eigen::Vector3f plane_normal, Eigen::Vector3f major_axis) {
    Eigen::Vector3d xvec_des, yvec_des, zvec_des;
    Eigen::Matrix3d Rmat;
    for (int i = 0; i < 3; i++) {
        zvec_des[i] = -plane_normal[i]; //want tool z pointing OPPOSITE surface normal
        xvec_des[i] = major_axis[i];
    }
    yvec_des = zvec_des.cross(xvec_des); //construct consistent right-hand triad
    Rmat.col(0)= xvec_des;
    Rmat.col(1)= yvec_des;
    Rmat.col(2)= zvec_des;
    return Rmat;
}
开发者ID:ROS-Group-epsilon,项目名称:MerryClustering,代码行数:14,代码来源:merry_motionplanner.cpp

示例10: Q

void
NurbsTools::pca (const vector_vec3d &data, ON_3dVector &mean, Eigen::Matrix3d &eigenvectors,
		 Eigen::Vector3d &eigenvalues)
{
  if (data.empty ())
  {
    printf ("[NurbsTools::pca] Error, data is empty\n");
    abort ();
  }

  mean = computeMean (data);

  unsigned s = data.size ();

  ON_Matrix Q(3, s);

  for (unsigned i = 0; i < s; i++) {
    Q[0][i] = data[i].x - mean.x;
    Q[1][i] = data[i].y - mean.y;
    Q[2][i] = data[i].z - mean.z;
  }

  ON_Matrix Qt = Q;
  Qt.Transpose();

  ON_Matrix oC;
  oC.Multiply(Q,Qt);

  Eigen::Matrix3d C(3,3);
  for (unsigned i = 0; i < 3; i++) {
      for (unsigned j = 0; j < 3; j++) {
	  C(i,j) = oC[i][j];
      }
  }

  Eigen::SelfAdjointEigenSolver < Eigen::Matrix3d > eigensolver (C);
  if (eigensolver.info () != Eigen::Success)
  {
    printf ("[NurbsTools::pca] Can not find eigenvalues.\n");
    abort ();
  }

  for (int i = 0; i < 3; ++i)
  {
    eigenvalues (i) = eigensolver.eigenvalues () (2 - i);
    if (i == 2)
      eigenvectors.col (2) = eigenvectors.col (0).cross (eigenvectors.col (1));
    else
      eigenvectors.col (i) = eigensolver.eigenvectors ().col (2 - i);
  }
}
开发者ID:cogitokat,项目名称:brlcad,代码行数:51,代码来源:opennurbs_fit.cpp

示例11: updateMillerPlane

  void CEViewOptionsWidget::updateMillerPlane()
  {
    // View into a Miller plane
    Camera *camera = m_glWidget->camera();
    Eigen::Transform3d modelView;
    modelView.setIdentity();

    // OK, so we want to rotate to look along the normal at the plane
    // So we convert <h k l> into a Cartesian normal
    Eigen::Matrix3d cellMatrix = m_ext->unconvertLength(m_ext->currentCellMatrix()).transpose();
    // Get miller indices:
    const Eigen::Vector3d millerIndices
      (static_cast<double>(ui.spin_mi_h->value()),
       static_cast<double>(ui.spin_mi_k->value()),
       static_cast<double>(ui.spin_mi_l->value()));
    // Check to see if we have 0,0,0
    //  in which case, we do nothing
    if (millerIndices.squaredNorm() < 0.5)
      return;

    const Eigen::Vector3d normalVector ((cellMatrix * millerIndices).normalized());

    Eigen::Matrix3d rotation;
    rotation.row(2) = normalVector;
    rotation.row(0) = rotation.row(2).unitOrthogonal();
    rotation.row(1) = rotation.row(2).cross(rotation.row(0));

    // Translate camera to the center of the cell
    const Eigen::Vector3d cellDiagonal =
        cellMatrix.col(0) * m_glWidget->aCells() +
        cellMatrix.col(1) * m_glWidget->bCells() +
        cellMatrix.col(2) * m_glWidget->cCells();

    modelView.translate(-cellDiagonal*0.5);

    // Prerotate the camera to look down the specified normal
    modelView.prerotate(rotation);


    // Pretranslate in the negative Z direction
    modelView.pretranslate(Eigen::Vector3d(0.0, 0.0,
                                           -1.5 * cellDiagonal.norm()));

    camera->setModelview(modelView);

    // Call for a redraw
    m_glWidget->update();
  }
开发者ID:Algerien1970,项目名称:avogadro,代码行数:48,代码来源:ceviewoptionswidget.cpp

示例12: computeEigenInertia

 void msEntity::computeEigenInertia(Eigen::Matrix3d& evect,Eigen::Vector3d& eval) const {
     
     evect=Eigen::Matrix3d::Zero();
     eval=Eigen::Vector3d::Zero();
     
     if(Elements.size()==0) return;
     
     Eigen::Matrix3d Inertia=Matrix3d::Zero();
     
     double A,B,C,D,E,F;A=B=C=D=E=F=0; double x,y,z,m;
     
     msChildren<msElement>::const_iterator it=Elements.begin();
     
     for(;it!=Elements.end();++it)
     {
         m=(*it)->getMass(getUnits()->getMass());
         x=(*it)->getPosition()[0];
         y=(*it)->getPosition()[1];
         z=(*it)->getPosition()[2];
         A+=m*(y*y+z*z);B+=m*(x*x+z*z);C+=m*(y*y+x*x);
         D-=m*(z*y);E-=m*(x*z);F-=m*(x*y);
     }
     Inertia<<A,F,E,F,B,D,E,D,C;
     Eigen::EigenSolver<Eigen::Matrix3d> eigensolver(Inertia);
     for( size_t i=0; i<3 ;i++ ){
         
         eval[i]= eigensolver.eigenvalues()[i].real();
         for( size_t j=0; j<3 ; j++ ) evect.col(i)[j] = eigensolver.eigenvectors().col(i)[j].real();
     }
 }
开发者ID:GuillaumeReinisch,项目名称:Impact,代码行数:30,代码来源:msEntity.cpp

示例13: update_arrows

void update_arrows() {
    geometry_msgs::Point origin, arrow_x_tip, arrow_y_tip, arrow_z_tip;
    Eigen::Matrix3d R;
    Eigen::Quaterniond quat;
    quat.x() = g_stamped_pose.pose.orientation.x;
    quat.y() = g_stamped_pose.pose.orientation.y;
    quat.z() = g_stamped_pose.pose.orientation.z;
    quat.w() = g_stamped_pose.pose.orientation.w;
    R = quat.toRotationMatrix();
    Eigen::Vector3d x_vec, y_vec, z_vec;
    double veclen = 0.2; //make the arrows this long
    x_vec = R.col(0) * veclen;
    y_vec = R.col(1) * veclen;
    z_vec = R.col(2) * veclen;

    //update the arrow markers w/ new pose:
    origin = g_stamped_pose.pose.position;
    arrow_x_tip = origin;
    arrow_x_tip.x += x_vec(0);
    arrow_x_tip.y += x_vec(1);
    arrow_x_tip.z += x_vec(2);
    arrow_marker_x.points.clear();
    arrow_marker_x.points.push_back(origin);
    arrow_marker_x.points.push_back(arrow_x_tip);
    arrow_marker_x.header = g_stamped_pose.header;

    arrow_y_tip = origin;
    arrow_y_tip.x += y_vec(0);
    arrow_y_tip.y += y_vec(1);
    arrow_y_tip.z += y_vec(2);

    arrow_marker_y.points.clear();
    arrow_marker_y.points.push_back(origin);
    arrow_marker_y.points.push_back(arrow_y_tip);
    arrow_marker_y.header = g_stamped_pose.header;

    arrow_z_tip = origin;
    arrow_z_tip.x += z_vec(0);
    arrow_z_tip.y += z_vec(1);
    arrow_z_tip.z += z_vec(2);

    arrow_marker_z.points.clear();
    arrow_marker_z.points.push_back(origin);
    arrow_marker_z.points.push_back(arrow_z_tip);
    arrow_marker_z.header = g_stamped_pose.header;
}
开发者ID:TuZZiX,项目名称:ros_workspace,代码行数:46,代码来源:triad_display.cpp

示例14: flip

ON_NurbsSurface
FittingSurface::initNurbsPCA (int order, NurbsDataSurface *m_data, ON_3dVector z)
{
  ON_3dVector mean;
  Eigen::Matrix3d eigenvectors;
  Eigen::Vector3d eigenvalues;

  unsigned s = m_data->interior.size ();

  NurbsTools::pca (m_data->interior, mean, eigenvectors, eigenvalues);

  m_data->mean = mean;
  //m_data->eigenvectors = (*eigenvectors);

  bool flip (false);
  Eigen::Vector3d ez(z[0],z[1],z[2]);
  if (eigenvectors.col (2).dot (ez) < 0.0)
     flip = true;

  eigenvalues = eigenvalues / s; // seems that the eigenvalues are dependent on the number of points (???)

  ON_3dVector sigma(sqrt(eigenvalues[0]), sqrt(eigenvalues[1]), sqrt(eigenvalues[2]));

  ON_NurbsSurface nurbs (3, false, order, order, order, order);
  nurbs.MakeClampedUniformKnotVector (0, 1.0);
  nurbs.MakeClampedUniformKnotVector (1, 1.0);

  // +- 2 sigma -> 95,45 % aller Messwerte
  double dcu = (4.0 * sigma[0]) / (nurbs.Order (0) - 1);
  double dcv = (4.0 * sigma[1]) / (nurbs.Order (1) - 1);

  ON_3dVector cv_t, cv;
  Eigen::Vector3d ecv_t, ecv;
  Eigen::Vector3d emean(mean[0], mean[1], mean[2]);
  for (int i = 0; i < nurbs.Order (0); i++)
  {
    for (int j = 0; j < nurbs.Order (1); j++)
    {
      cv[0] = -2.0 * sigma[0] + dcu * i;
      cv[1] = -2.0 * sigma[1] + dcv * j;
      cv[2] = 0.0;
      ecv (0) = -2.0 * sigma[0] + dcu * i;
      ecv (1) = -2.0 * sigma[1] + dcv * j;
      ecv (2) = 0.0;
      ecv_t = eigenvectors * ecv + emean;
      cv_t[0] = ecv_t (0);
      cv_t[1] = ecv_t (1);
      cv_t[2] = ecv_t (2);
      if (flip)
	nurbs.SetCV (nurbs.Order (0) - 1 - i, j, ON_3dPoint (cv_t[0], cv_t[1], cv_t[2]));
      else
	nurbs.SetCV (i, j, ON_3dPoint (cv_t[0], cv_t[1], cv_t[2]));
    }
  }
  return nurbs;
}
开发者ID:cogitokat,项目名称:brlcad,代码行数:56,代码来源:opennurbs_fit.cpp

示例15: drawGaussianDistributions

void MarkerArrayVisualizer::drawGaussianDistributions(const char* ns, const std::vector<Eigen::Vector3d>& mu, const std::vector<Eigen::Matrix3d>& sigma, double probability, const std::vector<double>& offset)
{
    visualization_msgs::MarkerArray marker_array;

    const int size = mu.size();

    for (int i=0; i<size; i++)
    {
        visualization_msgs::Marker marker;

        marker.header.frame_id = "/world";
        marker.header.stamp = ros::Time::now();

        marker.ns = ns;
        marker.id = i;
        marker.type = visualization_msgs::Marker::SPHERE;
        marker.action = visualization_msgs::Marker::ADD;

        // axis: eigenvectors
        // radius: eigenvalues
        Eigen::JacobiSVD<Eigen::MatrixXd> svd(sigma[i], Eigen::ComputeThinU | Eigen::ComputeThinV);
        const Eigen::VectorXd& r = svd.singularValues();
        Eigen::Matrix3d Q = svd.matrixU();

        // to make determinant 1
        if (Q.determinant() < 0)
            Q.col(2) *= -1.;
        const Eigen::Quaterniond q(Q);

        marker.pose.position.x = mu[i](0);
        marker.pose.position.y = mu[i](1);
        marker.pose.position.z = mu[i](2);
        marker.pose.orientation.x = q.x();
        marker.pose.orientation.y = q.y();
        marker.pose.orientation.z = q.z();
        marker.pose.orientation.w = q.w();

        const double probability_radius = gaussianDistributionRadius3D(probability);

        marker.scale.x = 2. * (probability_radius * std::sqrt(r[0]) + offset[i]);
        marker.scale.y = 2. * (probability_radius * std::sqrt(r[1]) + offset[i]);
        marker.scale.z = 2. * (probability_radius * std::sqrt(r[2]) + offset[i]);

        marker.color.r = 1.0;
        marker.color.g = 0.0;
        marker.color.b = 0.0;
        marker.color.a = 0.25;

        marker.lifetime = ros::Duration();

        marker_array.markers.push_back(marker);
    }

    publish(marker_array);
}
开发者ID:pjsdream,项目名称:pcpred,代码行数:55,代码来源:marker_array_visualizer.cpp


注:本文中的eigen::Matrix3d::col方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。