本文整理汇总了C++中Transform::Apply方法的典型用法代码示例。如果您正苦于以下问题:C++ Transform::Apply方法的具体用法?C++ Transform::Apply怎么用?C++ Transform::Apply使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Transform
的用法示例。
在下文中一共展示了Transform::Apply方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Normalize
static void Normalize(vector<cv::Point2d> * shape, const TrainingParameters &tp)
{
cv::Point2d center;
for (const cv::Point2d p : *shape)
center += p;
center *= 1.0 / shape->size();
for (cv::Point2d &p : *shape)
p -= center;
cv::Point2d left_eye = (*shape).at(tp.left_eye_index);
cv::Point2d right_eye = (*shape).at(tp.right_eye_index);
double eyes_distance = cv::norm(left_eye - right_eye);
double scale = 1 / eyes_distance;
double theta = -atan((right_eye.y - left_eye.y) / (right_eye.x - left_eye.x));
// Must do translation first, and then rotation.
// Therefore, translation is done separately
Transform t;
t.scale_rotation(0, 0) = scale * cos(theta);
t.scale_rotation(0, 1) = -scale * sin(theta);
t.scale_rotation(1, 0) = scale * sin(theta);
t.scale_rotation(1, 1) = scale * cos(theta);
t.Apply(shape, false);
}
示例2: MeanShape
vector<cv::Point2d> MeanShape(vector<vector<cv::Point2d>> shapes,
const TrainingParameters &tp)
{
const int kIterationCount = 10;
vector<cv::Point2d> mean_shape = shapes[0];
for (int i = 0; i < kIterationCount; ++i)
{
for (vector<cv::Point2d> & shape: shapes)
{
Transform t = Procrustes(mean_shape, shape);
t.Apply(&shape);
}
for (cv::Point2d & p : mean_shape)
p.x = p.y = 0;
for (const vector<cv::Point2d> & shape : shapes)
for (int j = 0; j < mean_shape.size(); ++j)
{
mean_shape[j].x += shape[j].x;
mean_shape[j].y += shape[j].y;
}
for (cv::Point2d & p : mean_shape)
p *= 1.0 / shapes.size();
Normalize(&mean_shape, tp);
}
return mean_shape;
}
示例3: Procrustes
vector<cv::Point2d> FaceX::Alignment(cv::Mat image,
vector<cv::Point2d> initial_landmarks) const
{
vector<vector<double>> all_results(test_init_shapes_[0].size() * 2);
for (int i = 0; i < test_init_shapes_.size(); ++i)
{
Transform t = Procrustes(initial_landmarks, test_init_shapes_[i]);
vector<cv::Point2d> init_shape = test_init_shapes_[i];
t.Apply(&init_shape);
for (int j = 0; j < stage_regressors_.size(); ++j)
{
vector<cv::Point2d> offset =
stage_regressors_[j].Apply(image, mean_shape_, init_shape);
Transform t = Procrustes(init_shape, mean_shape_);
t.Apply(&offset, false);
init_shape = ShapeAdjustment(init_shape, offset);
}
for (int i = 0; i < init_shape.size(); ++i)
{
all_results[i * 2].push_back(init_shape[i].x);
all_results[i * 2 + 1].push_back(init_shape[i].y);
}
}
vector<cv::Point2d> result(test_init_shapes_[0].size());
for (int i = 0; i < result.size(); ++i)
{
nth_element(all_results[i * 2].begin(),
all_results[i * 2].begin() + test_init_shapes_.size() / 2,
all_results[i * 2].end());
result[i].x = all_results[i * 2][test_init_shapes_.size() / 2];
nth_element(all_results[i * 2 + 1].begin(),
all_results[i * 2 + 1].begin() + test_init_shapes_.size() / 2,
all_results[i * 2 + 1].end());
result[i].y = all_results[i * 2 + 1][test_init_shapes_.size() / 2];
}
return result;
}
示例4: SetTransform
void SetTransform(const Transform &inTrans)
{
int points = mCount;
if (points!=mTransformed.size() || inTrans!=mTransform)
{
mTransform = inTrans;
mTransformed.resize(points);
UserPoint *src= (UserPoint *)&mData[ mData0 ];
for(int i=0;i<points;i++)
{
mTransformed[i] = mTransform.Apply(src[i].x,src[i].y);
}
}
}
示例5: pixels_val
vector<cv::Point2d> Regressor::Apply(const vector<cv::Point2d> &mean_shape,
cv::Mat image_infrared, cv::Mat image_depth, const vector<cv::Point2d> &init_shape) const
{
cv::Mat pixels_val(1, pixels_.size(), CV_64FC1);
Transform t = Procrustes(init_shape, mean_shape);
vector<cv::Point2d> offsets(pixels_.size());
for (int j = 0; j < pixels_.size(); ++j)
offsets[j] = pixels_[j].offset;
t.Apply(&offsets, false);
vector<cv::Point> pixels_pos;
for (int j = 0; j < pixels_.size(); ++j)
pixels_pos.push_back(init_shape[pixels_[j].base_landmark] + offsets[j]);
pair<double, double> coeffs = ComputePose(image_depth, pixels_pos);
double *p = pixels_val.ptr<double>(0);
for (int j = 0; j < pixels_.size(); ++j)
{
if (pixels_pos[j].inside(cv::Rect(0, 0, image_infrared.cols, image_infrared.rows)))
{
if (pixels_[j].type == 0)
p[j] = image_infrared.at<ushort>(pixels_pos[j]);
else
{
p[j] = image_depth.at<ushort>(pixels_pos[j])
- alpha_ * (coeffs.first * pixels_pos[j].x + coeffs.second * pixels_pos[j].y);
}
}
else
p[j] = 0;
}
cv::Mat base_coeffs = cv::Mat::zeros(base_.cols, 1, CV_64FC1);
for (int i = 0; i < ferns_.size(); ++i)
ferns_[i].ApplyMini(pixels_val, base_coeffs);
cv::Mat result_mat = base_ * base_coeffs;
vector<cv::Point2d> result(mean_shape.size());
for (int i = 0; i < result.size(); ++i)
{
result[i].x = result_mat.at<double>(i * 2);
result[i].y = result_mat.at<double>(i * 2 + 1);
}
return result;
}
示例6: MapShape
vector<cv::Point2d> FaceX::Alignment(cv::Mat image_infrared, cv::Mat image_depth, cv::Rect face_rect) const
{
CV_Assert(is_loaded_);
vector<vector<double>> all_results(test_init_shapes_[0].size() * 2);
for (int i = 0; i < test_init_shapes_.size(); ++i)
{
vector<cv::Point2d> init_shape = MapShape(cv::Rect(0, 0, 1, 1),
test_init_shapes_[i], face_rect);
for (int j = 0; j < stage_regressors_.size(); ++j)
{
vector<cv::Point2d> offset =
stage_regressors_[j].Apply(mean_shape_, image_infrared, image_depth, init_shape);
Transform t = Procrustes(init_shape, mean_shape_);
t.Apply(&offset, false);
init_shape = ShapeAdjustment(init_shape, offset);
}
for (int i = 0; i < init_shape.size(); ++i)
{
all_results[i * 2].push_back(init_shape[i].x);
all_results[i * 2 + 1].push_back(init_shape[i].y);
}
}
vector<cv::Point2d> result(test_init_shapes_[0].size());
for (int i = 0; i < result.size(); ++i)
{
nth_element(all_results[i * 2].begin(),
all_results[i * 2].begin() + test_init_shapes_.size() / 2,
all_results[i * 2].end());
result[i].x = all_results[i * 2][test_init_shapes_.size() / 2];
nth_element(all_results[i * 2 + 1].begin(),
all_results[i * 2 + 1].begin() + test_init_shapes_.size() / 2,
all_results[i * 2 + 1].end());
result[i].y = all_results[i * 2 + 1][test_init_shapes_.size() / 2];
}
return result;
}
示例7: Apply
void RTree::Apply(int num_trees, int num_lm, int index_tree, int index_lm,
const cv::Mat &image, const vector<cv::Point2d> &mean_shape,
const vector<cv::Point2d> &init_shape, cv::Mat &bin_feat) const
{
int num_nodes_split = (num_nodes - 1) / 2;
int idx_node = 0;
while (idx_node < num_nodes_split){
// get the feature and go ahead
double feat;
Transform t = Procrustes(init_shape, mean_shape);
vector<cv::Point2d> offset_pair(2);
offset_pair[0] = feats[idx_node].first;
offset_pair[1] = feats[idx_node].second;
t.Apply(&offset_pair, false);
cv::Point feat_pos_first = init_shape[index_lm] + offset_pair[0];
cv::Point feat_pos_second = init_shape[index_lm] + offset_pair[1];
if (feat_pos_first.inside(cv::Rect(0, 0, image.cols, image.rows))
&& feat_pos_second.inside(cv::Rect(0, 0, image.cols, image.rows)))
{
feat = image.at<uchar>(feat_pos_first)
-image.at<uchar>(feat_pos_second);
}
else
feat = 0;
if (feat < thresholds[idx_node]) idx_node = 2 * idx_node + 1;
else idx_node = 2 * idx_node + 2;
}
if (idx_node >= num_nodes)
throw out_of_range("idx_node is greater than or equal to num_nodes during appling the tree");
// calculate the index of this leaf node in the binary feature vector
int num_leaves = num_nodes - num_nodes_split;
int bool_index = index_lm * num_trees * num_leaves
+ index_tree * num_leaves + idx_node - (num_nodes - num_leaves);
if (bool_index > num_lm * num_trees * num_leaves)
throw out_of_range("bool index is out of the range of bin_feat during appling the tree");
bin_feat.at<float>(0, bool_index) = 1;
}