本文整理汇总了C++中Pose3D::setCameraTransform方法的典型用法代码示例。如果您正苦于以下问题:C++ Pose3D::setCameraTransform方法的具体用法?C++ Pose3D::setCameraTransform怎么用?C++ Pose3D::setCameraTransform使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Pose3D
的用法示例。
在下文中一共展示了Pose3D::setCameraTransform方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: onCameraPositionUpdate
void CalibrationMeshViewer::onCameraPositionUpdate(const cv::Vec3f &translation, const cv::Vec3f &rotation)
{
if (!m_calibration_mode)
{
MeshViewer::onCameraPositionUpdate(translation, rotation);
return;
}
GLdouble m[16];
GLdouble deltam[16];
const float rotation_scale = 0.2;
const float translation_scale = 0.2;
// Get the delta transformation is visualization frame.
makeCurrent();
glMatrixMode(GL_MODELVIEW);
glGetDoublev(GL_MODELVIEW_MATRIX, m);
glLoadIdentity();
glTranslatef(translation_scale*translation[0],translation_scale*translation[1],translation_scale*translation[2]);
glTranslatef(m_display_center.x,m_display_center.y,m_display_center.z);
glRotatef(rotation_scale*rotation[0], 0,1,0);
glRotatef(rotation_scale*rotation[1], 1,0,0);
glTranslatef(-m_display_center.x,-m_display_center.y,-m_display_center.z);
glGetDoublev(GL_MODELVIEW_MATRIX, deltam);
glLoadMatrixd(m);
cv::Vec3f t,r;
window->getCalibration(t, r);
Pose3D p_old;
p_old.applyTransformBefore(t, r);
cv::Mat1d H_old = p_old.cvCameraTransformd();
cv::Mat1d H(4,4,(double*)deltam); H = H.t(); // delta rotation AFTER model view matrix
cv::Mat1d M(4,4,(double*)m); M = M.t(); // model view matrix
cv::Mat1d Hp = (M.inv() * H * M * H_old.inv()).inv(); // delta rotation BEFORE model view matrix
Pose3D p;
p.setCameraTransform(Hp);
window->updateFromCalibration(p.cvTranslation(), p.cvEulerRotation());
window->updateToCalibration();
}
示例2: pointCloudToMesh
bool RelativePoseEstimatorICP<PointT> ::
computeRegistration(Pose3D& relative_pose,
PointCloudConstPtr source_cloud,
PointCloudConstPtr target_cloud,
PointCloudType& aligned_cloud)
{
pcl::IterativeClosestPoint<PointT, PointT> reg;
reg.setMaximumIterations (m_max_iterations);
reg.setTransformationEpsilon (1e-10);
reg.setRANSACOutlierRejectionThreshold(m_ransac_outlier_threshold);
reg.setMaxCorrespondenceDistance (m_distance_threshold);
reg.setInputCloud (source_cloud);
reg.setInputTarget (target_cloud);
reg.align (aligned_cloud);
if (0)
{
ntk::Mesh mesh1, mesh2;
pointCloudToMesh(mesh1, aligned_cloud);
pointCloudToMesh(mesh2, *target_cloud);
mesh1.saveToPlyFile("debug_icp_1.ply");
mesh2.saveToPlyFile("debug_icp_2.ply");
}
if (!reg.hasConverged())
{
ntk_dbg(1) << "ICP did not converge, ignoring.";
return false;
}
ntk_dbg_print(reg.getFitnessScore(), 1);
Eigen::Matrix4f t = reg.getFinalTransformation ();
cv::Mat1f T(4,4);
//toOpencv(t,T);
for (int r = 0; r < 4; ++r)
for (int c = 0; c < 4; ++c)
T(r,c) = t(r,c);
relative_pose.setCameraTransform(T);
return true;
}
示例3: calibrate_kinect_depth
//.........这里部分代码省略.........
std::vector<Mat> rvecs, tvecs;
int flags = 0;
if (global::opt_ignore_distortions())
flags = CV_CALIB_ZERO_TANGENT_DIST;
double error = calibrateCamera(pattern_points, good_corners, global::image_size,
global::depth_intrinsics, global::depth_distortion,
rvecs, tvecs, flags);
if (global::opt_ignore_distortions())
global::depth_distortion = 0.f;
ntk_dbg_print(error, 1);
int good_i = 0;
foreach_idx(stereo_i, stereo_corners)
{
if (stereo_corners[stereo_i].size() > 0)
{
QString filename = global::images_list[stereo_i];
QDir cur_image_dir (global::images_dir.absoluteFilePath(filename));
std::string full_filename;
cv::Mat3b image;
load_intensity_file(cur_image_dir.path().toStdString(), full_filename, image);
ntk_ensure(image.data, "Could not load intensity image");
kinect_shift_ir_to_depth(image);
cv::Mat1f depth_image;
if (is_file(cur_image_dir.absoluteFilePath("raw/depth.yml").toStdString()))
{
full_filename = cur_image_dir.absoluteFilePath("raw/depth.yml").toStdString();
depth_image = imread_yml(full_filename);
}
else if (is_file(cur_image_dir.absoluteFilePath("raw/depth.raw").toStdString()))
{
full_filename = cur_image_dir.absoluteFilePath("raw/depth.raw").toStdString();
depth_image = imread_Mat1f_raw(full_filename);
}
ntk_ensure(depth_image.data, "Could not load depth image");
cv::Mat3b undistorted_image;
if (global::opt_ignore_distortions())
image.copyTo(undistorted_image);
else
undistort(image, undistorted_image, global::depth_intrinsics, global::depth_distortion);
std::vector<Point2f> current_view_corners;
calibrationCorners(full_filename, "corners",
global::opt_pattern_width(), global::opt_pattern_height(),
current_view_corners, undistorted_image, 1);
if (current_view_corners.size() == (global::opt_pattern_width()*global::opt_pattern_height()))
{
stereo_corners[stereo_i] = current_view_corners;
showCheckerboardCorners(undistorted_image, stereo_corners[stereo_i], 200);
}
else
{
stereo_corners[stereo_i].resize(0);
continue;
}
// Generate calibration points
{
// FIXME: why rvecs and tvecs from calibrateCamera seems to be nonsense ?
// calling findExtrinsics another time to get good chessboard estimations.
cv::Mat1f H;
estimate_checkerboard_pose(pattern_points[0],
current_view_corners,
global::depth_intrinsics,
H);
Pose3D pose;
pose.setCameraParametersFromOpencv(global::depth_intrinsics);
ntk_dbg_print(pose, 1);
pose.setCameraTransform(H);
foreach_idx(pattern_i, pattern_points[0])
{
ntk_dbg_print(pattern_points[0][pattern_i], 1);
Point3f p = pose.projectToImage(pattern_points[0][pattern_i]);
ntk_dbg_print(p, 1);
double kinect_raw = depth_image(p.y, p.x);
if (!(kinect_raw < 2047)) continue;
ntk_dbg_print(kinect_raw, 1);
double linear_depth = 1.0 / (kinect_raw * -0.0030711016 + 3.3309495161);
const float k1 = 1.1863;
const float k2 = 2842.5;
const float k3 = 0.1236;
double tan_depth = k3 * tanf(kinect_raw/k2 + k1);
ntk_dbg_print(linear_depth, 1);
ntk_dbg_print(tan_depth, 1);
depth_values.push_back(DepthCalibrationPoint(kinect_raw, p.z));
}
}
++good_i;
}
示例4: calibrate_kinect_depth
void calibrate_kinect_depth(std::vector< DepthCalibrationPoint >& depth_values)
{
std::vector< std::vector<Point3f> > pattern_points;
calibrationPattern(pattern_points,
global::opt_pattern_width(), global::opt_pattern_height(), global::opt_square_size(),
global::images_list.size());
for (int i_image = 0; i_image < global::images_list.size(); ++i_image)
{
// Generate depth calibration points
QString filename = global::images_list[i_image];
QDir cur_image_dir (global::images_dir.absoluteFilePath(filename));
std::string full_filename = cur_image_dir.absoluteFilePath("raw/color.png").toStdString();
RGBDImage image;
OpenniRGBDProcessor processor;
processor.setFilterFlag(RGBDProcessorFlags::ComputeMapping, true);
image.loadFromDir(cur_image_dir.absolutePath().toStdString(), &global::calibration, &processor);
imshow_normalized("mapped depth", image.mappedDepth());
imshow("color", image.rgb());
std::vector<Point2f> current_view_corners;
calibrationCorners(full_filename, "corners",
global::opt_pattern_width(), global::opt_pattern_height(),
current_view_corners, image.rgb(), 1, global::pattern_type);
if (current_view_corners.size() != (global::opt_pattern_width()*global::opt_pattern_height()))
{
ntk_dbg(1) << "Corners not detected in " << cur_image_dir.absolutePath().toStdString();
continue;
}
// FIXME: why rvecs and tvecs from calibrateCamera seems to be nonsense ?
// calling findExtrinsics another time to get good chessboard estimations.
cv::Mat1f H;
estimate_checkerboard_pose(pattern_points[0],
current_view_corners,
global::calibration.rgb_intrinsics,
H);
Pose3D pose;
pose.setCameraParametersFromOpencv(global::calibration.rgb_intrinsics);
pose.setCameraTransform(H);
ntk_dbg_print(pose, 1);
cv::Mat3b debug_img;
image.rgb().copyTo(debug_img);
foreach_idx(pattern_i, pattern_points[0])
{
Point3f p = pose.projectToImage(pattern_points[0][pattern_i]);
ntk_dbg_print(p, 1);
float kinect_raw = image.mappedDepth()(p.y, p.x);
ntk_dbg_print(kinect_raw, 1);
if (kinect_raw < 1e-5) continue;
float err = kinect_raw-p.z;
cv::putText(debug_img, format("%d", (int)(err*1000)), Point(p.x, p.y), CV_FONT_NORMAL, 0.4, Scalar(255,0,0));
ntk_dbg_print(pattern_points[0][pattern_i], 1);
ntk_dbg_print(p, 1);
ntk_dbg_print(kinect_raw, 1);
depth_values.push_back(DepthCalibrationPoint(kinect_raw, p.z));
}
imshow("errors", debug_img);
cv::waitKey(0);
}
示例5: computeRegistration
//.........这里部分代码省略.........
// boost::shared_ptr<TransformRGBD> transform_rgbd (new TransformRGBD);
// reg.setTransformationEstimation (transform_rgbd);
#ifdef HAVE_PCL_GREATER_THAN_1_6_0 // rejectors are not well supported before 1.7
boost::shared_ptr<pcl::registration::CorrespondenceRejectorDistance> rejector_distance (new pcl::registration::CorrespondenceRejectorDistance);
rejector_distance->setInputSource<PointT>(source_cloud);
rejector_distance->setInputTarget<PointT>(target_cloud);
rejector_distance->setMaximumDistance(m_distance_threshold);
reg.addCorrespondenceRejector(rejector_distance);
boost::shared_ptr<pcl::registration::CorrespondenceRejectorSurfaceNormal> rejector_normal (new pcl::registration::CorrespondenceRejectorSurfaceNormal);
rejector_normal->setThreshold(cos(M_PI/4.f));
rejector_normal->initializeDataContainer<PointT, PointT>();
rejector_normal->setInputSource<PointT>(source_cloud);
rejector_normal->setInputTarget<PointT>(target_cloud);
rejector_normal->setInputNormals<PointT, PointT>(source_cloud);
rejector_normal->setTargetNormals<PointT, PointT>(target_cloud);
reg.addCorrespondenceRejector(rejector_normal);
boost::shared_ptr<pcl::registration::CorrespondenceRejectorOneToOne> rejector_one_to_one (new pcl::registration::CorrespondenceRejectorOneToOne);
reg.addCorrespondenceRejector(rejector_one_to_one);
typedef pcl::registration::CorrespondenceRejectorSampleConsensus<PointT> RejectorConsensusT;
boost::shared_ptr<RejectorConsensusT> rejector_ransac (new RejectorConsensusT());
rejector_ransac->setInputSource(source_cloud);
rejector_ransac->setInputTarget(target_cloud);
rejector_ransac->setInlierThreshold(m_ransac_outlier_threshold);
rejector_ransac->setMaxIterations(100);
reg.addCorrespondenceRejector(rejector_ransac);
boost::shared_ptr<pcl::registration::CorrespondenceRejectorVarTrimmed> rejector_var_trimmed (new pcl::registration::CorrespondenceRejectorVarTrimmed());
rejector_var_trimmed->setInputSource<PointT>(source_cloud);
rejector_var_trimmed->setInputTarget<PointT>(target_cloud);
rejector_var_trimmed->setMinRatio(0.1f);
rejector_var_trimmed->setMaxRatio(0.75f);
reg.addCorrespondenceRejector(rejector_var_trimmed);
boost::shared_ptr<pcl::registration::CorrespondenceRejectorTrimmed> rejector_trimmed (new pcl::registration::CorrespondenceRejectorTrimmed());
rejector_trimmed->setMinCorrespondences(static_cast<int>(0.1f * source_cloud->size()));
rejector_trimmed->setOverlapRatio(0.5f);
reg.addCorrespondenceRejector(rejector_trimmed);
#endif
#if 0
ntk::Mesh target_mesh;
pointCloudToMesh(target_mesh, *target_cloud);
target_mesh.saveToPlyFile("debug_target.ply");
ntk::Mesh source_mesh;
pointCloudToMesh(source_mesh, *source_cloud);
source_mesh.saveToPlyFile("debug_source.ply");
#endif
reg.setMaximumIterations (m_max_iterations);
reg.setTransformationEpsilon (1e-10);
reg.setMaxCorrespondenceDistance (m_distance_threshold);
reg.setRANSACOutlierRejectionThreshold(m_ransac_outlier_threshold);
#ifdef HAVE_PCL_GREATER_THAN_1_6_0
reg.setInputSource (source_cloud);
#else
reg.setInputCloud (source_cloud);
#endif
reg.setInputTarget (target_cloud);
reg.align (aligned_cloud);
if (!reg.hasConverged())
{
ntk_dbg(1) << "ICP did not converge, ignoring.";
return false;
}
if (0)
{
ntk::Mesh mesh1, mesh2;
pointCloudToMesh(mesh1, aligned_cloud);
pointCloudToMesh(mesh2, *target_cloud);
mesh1.saveToPlyFile("debug_icp_1.ply");
mesh2.saveToPlyFile("debug_icp_2.ply");
}
#if 0
ntk::Mesh debug_mesh;
pointCloudToMesh(debug_mesh, aligned_cloud);
debug_mesh.saveToPlyFile("debug_aligned.ply");
#endif
ntk_dbg_print(reg.getFitnessScore(), 1);
Eigen::Matrix4f t = reg.getFinalTransformation ();
cv::Mat1f T(4,4);
//toOpencv(t,T);
for (int r = 0; r < 4; ++r)
for (int c = 0; c < 4; ++c)
T(r,c) = t(r,c);
relative_pose.setCameraTransform(T);
#endif
return true;
}