本文整理汇总了C++中Plane::LeastSquaresFit方法的典型用法代码示例。如果您正苦于以下问题:C++ Plane::LeastSquaresFit方法的具体用法?C++ Plane::LeastSquaresFit怎么用?C++ Plane::LeastSquaresFit使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Plane
的用法示例。
在下文中一共展示了Plane::LeastSquaresFit方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Fit
bool PlanePrimitiveShape::Fit(const PointCloud &pc, float epsilon,
float normalThresh, MiscLib::Vector< size_t >::const_iterator begin,
MiscLib::Vector< size_t >::const_iterator end)
{
Plane fit = m_plane;
//if(fit.LeastSquaresFit(pc, begin, end))
if(fit.LeastSquaresFit(pc, begin, end))
{
m_plane = fit;
m_hcs.FromNormal(m_plane.getNormal());
return true;
}
return false;
}
示例2: PlanePrimitiveShape
PrimitiveShape *PlanePrimitiveShape::LSFit(const PointCloud &pc, float epsilon,
float normalThresh, MiscLib::Vector< size_t >::const_iterator begin,
MiscLib::Vector< size_t >::const_iterator end,
std::pair< size_t, float > *score) const
{
Plane fit = m_plane;
if(fit.LeastSquaresFit(pc, begin, end))
{
score->first = -1;
return new PlanePrimitiveShape(fit);
}
score->first = 0;
return NULL;
}
示例3: SuggestSimplifications
void ConePrimitiveShape::SuggestSimplifications(const PointCloud &pc,
MiscLib::Vector< size_t >::const_iterator begin,
MiscLib::Vector< size_t >::const_iterator end, float distThresh,
MiscLib::Vector< MiscLib::RefCountPtr< PrimitiveShape > > *suggestions) const
{
// sample the bounding box in parameter space at 25 locations
// these points are used to estimate the other shapes
// if the shapes succeed the suggestion is returned
MiscLib::Vector< Vec3f > samples(2 * 25);
float uStep = (m_extBbox.Max()[0] - m_extBbox.Min()[0]) / 4;
float vStep = (m_extBbox.Max()[1] - m_extBbox.Min()[1]) / 4;
float u = m_extBbox.Min()[0];
for(unsigned int i = 0; i < 5; ++i, u += uStep)
{
float v = m_extBbox.Min()[1];
for(unsigned int j = 0; j < 5; ++j, v += vStep)
{
float bmpu, bmpv;
if(m_cone.Angle() >= M_PI / 4)
{
bmpu = std::sin(v) * u;
bmpv = std::cos(v) * u;
}
else
{
bmpu = u;
float r = m_cone.RadiusAtLength(u);
bmpv = (v - float(M_PI)) * r;
}
InSpace(bmpu, bmpv, &samples[i * 5 + j],
&samples[i * 5 + j + 25]);
}
}
size_t c = samples.size() / 2;
// now check all the shape types
Cylinder cylinder;
if(cylinder.InitAverage(samples))
{
cylinder.LeastSquaresFit(samples.begin(), samples.begin() + c);
bool failed = false;
for(size_t i = 0; i < c; ++i)
if(cylinder.Distance(samples[i]) > distThresh)
{
failed = true;
break;
}
if(!failed)
{
suggestions->push_back(new CylinderPrimitiveShape(cylinder));
suggestions->back()->Release();
}
}
Sphere sphere;
if(sphere.Init(samples))
{
sphere.LeastSquaresFit(samples.begin(), samples.begin() + c);
bool failed = false;
for(size_t i = 0; i < c; ++i)
if(sphere.Distance(samples[i]) > distThresh)
{
failed = true;
break;
}
if(!failed)
{
suggestions->push_back(new SpherePrimitiveShape(sphere));
suggestions->back()->Release();
}
}
Plane plane;
if(plane.LeastSquaresFit(samples.begin(), samples.begin() + c))
{
bool failed = false;
for(size_t i = 0; i < c; ++i)
if(plane.Distance(samples[i]) > distThresh)
{
failed = true;
break;
}
if(!failed)
{
suggestions->push_back(new PlanePrimitiveShape(plane));
suggestions->back()->Release();
}
}
/*// simpler shapes are suggested if the maximal curvature of the cone
// is small compared to the extend in relation to the distThresh
float meanRadius, length, meanLength, radialExtent;
// the cone is parameterized as length and angle
// in this case the cone is parametrized as length and arclength
meanRadius = (m_cone.RadiusAtLength(m_extBbox.Min()[0])
+ m_cone.RadiusAtLength(m_extBbox.Max()[0])) / 2;
length = m_extBbox.Max()[0] - m_extBbox.Min()[0];
meanLength = (m_extBbox.Max()[0] + m_extBbox.Min()[0]) / 2;
// the radial extent
radialExtent = m_extBbox.Max()[1] - m_extBbox.Min()[1];
// We suggest a cylinder if the opening angle of the cone is so small
// that over the whole height the difference is less than distThresh
//.........这里部分代码省略.........
示例4: SuggestSimplifications
void CylinderPrimitiveShape::SuggestSimplifications(const PointCloud &pc,
MiscLib::Vector< size_t >::const_iterator begin,
MiscLib::Vector< size_t >::const_iterator end, float distThresh,
MiscLib::Vector< MiscLib::RefCountPtr< PrimitiveShape > > *suggestions) const
{
// sample the bounding box in parameter space at 25 locations
// these points are used to estimate the other shapes
// if the shapes succeed the suggestion is returned
MiscLib::Vector< Vec3f > samples(2 * 25);
float uStep = (m_extBbox.Max()[0] - m_extBbox.Min()[0]) / 4;
float vStep = (m_extBbox.Max()[1] - m_extBbox.Min()[1]) / 4;
float u = m_extBbox.Min()[0];
for(unsigned int i = 0; i < 5; ++i, u += uStep)
{
float v = m_extBbox.Min()[1];
for(unsigned int j = 0; j < 5; ++j, v += vStep)
InSpace(u, v * m_cylinder.Radius(), &samples[i * 5 + j],
&samples[i * 5 + j + 25]);
}
size_t c = samples.size() / 2;
// now check all the shape types
Sphere sphere;
if(sphere.Init(samples))
{
sphere.LeastSquaresFit(samples.begin(), samples.begin() + c);
bool failed = false;
for(size_t i = 0; i < c; ++i)
if(sphere.Distance(samples[i]) > distThresh)
{
failed = true;
break;
}
if(!failed)
{
suggestions->push_back(new SpherePrimitiveShape(sphere));
suggestions->back()->Release();
}
}
Plane plane;
if(plane.LeastSquaresFit(samples.begin(), samples.begin() + c))
{
bool failed = false;
for(size_t i = 0; i < c; ++i)
if(plane.Distance(samples[i]) > distThresh)
{
failed = true;
break;
}
if(!failed)
{
suggestions->push_back(new PlanePrimitiveShape(plane));
suggestions->back()->Release();
}
}
/*// We suggest a sphere if a curvature of radius along the height
// does not introduce too large an error
float length = m_extBbox.Max()[0] - m_extBbox.Min()[0];
float meanLength = (m_extBbox.Max()[0] + m_extBbox.Min()[0]) / 2;
float radiusDiff = (std::sqrt(m_cylinder.Radius() * m_cylinder.Radius()
+ length * length / 4) - m_cylinder.Radius()) / 2;
float radialExtent = m_extBbox.Max()[1] - m_extBbox.Min()[1];
if(radiusDiff < distThresh)
{
// the center of the sphere is given as the point on the axis
// with the height of the mean length
Vec3f center = meanLength * m_cylinder.AxisDirection()
+ m_cylinder.AxisPosition();
Sphere sphere(center, m_cylinder.Radius() + radiusDiff);
suggestions->push_back(new SpherePrimitiveShape(sphere));
suggestions->back()->Release();
}
// We suggest a plane if the mean radius causes only a small error
// for this we need the angular extent in the curved direction of the cone
radiusDiff = (m_cylinder.Radius() - std::cos(radialExtent / 2)
* m_cylinder.Radius()) / 2;
if(radiusDiff < distThresh)
{
GfxTL::Vector2Df bboxCenter;
m_extBbox.Center(&bboxCenter);
Vec3f pos, normal;
InSpace(bboxCenter[0], bboxCenter[1] * m_cylinder.Radius(),
&pos, &normal);
// offset position
pos -= radiusDiff * normal;
Plane plane(pos, normal);
suggestions->push_back(new PlanePrimitiveShape(plane));
suggestions->back()->Release();
}*/
}