本文整理汇总了C++中Orientation::GetUp方法的典型用法代码示例。如果您正苦于以下问题:C++ Orientation::GetUp方法的具体用法?C++ Orientation::GetUp怎么用?C++ Orientation::GetUp使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Orientation
的用法示例。
在下文中一共展示了Orientation::GetUp方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: GetString
ZString GetString(int indent, const Orientation& orient)
{
return
"Orientation("
+ GetString(indent, orient.GetUp()) + ", "
+ GetString(indent, orient.GetForward()) + ")";
}
示例2: GetMyMission
//.........这里部分代码省略.........
pside, myPosition, dtUpdate, accuracy, speed, lifespan, OT_station,
&pmodelTarget, &distance2Min, &directionMin);
}
}
if (pmodelTarget)
{
if (m_launcher && (m_launcher->GetMission() != GetMyMission()))
m_launcher = NULL;
//It is going to shoot ... make it visible to everyone in the sector
if (!m_bSeenByAll)
{
m_bSeenByAll = true;
for (SideLinkIGC* psl = m_pMission->GetSides()->first();
(psl != NULL);
psl = psl->next())
{
IsideIGC* psideOther = psl->data();
if (!SeenBySide(psideOther))
{
//Does this side have any scanners in the sector?
ClusterSite* pcs = pcluster->GetClusterSite();
const ScannerListIGC* psl = pcs->GetScanners(psideOther->GetObjectID());
if ((psl->n() != 0) || (m_pMission->GetMissionParams()->bAllowAlliedViz && psideOther->AlliedSides(psideOther,pside))) //ALLY 7/3/09 VISIBILITY 7/11/09 imago
SetSideVisibility(psideOther, true);
else
m_bSeenByAll = false;
}
}
}
//We have a target ... fire along directionMin (modulo dispersion)
Orientation o = GetOrientation();
o.TurnTo(directionMin);
SetOrientation(o);
Vector position = myPosition + m_probeType->GetEmissionPt() * o;
DataProjectileIGC dataProjectile;
dataProjectile.projectileTypeID = m_projectileType->GetObjectID();
short nShots = 0;
do
{
//Permute the "forward" direction slightly by a random amount
dataProjectile.forward = directionMin;
if (dispersion != 0.0f)
{
float r = random(0.0f, dispersion);
float a = random(0.0f, 2.0f * pi);
dataProjectile.forward += (r * cos(a)) * o.GetRight();
dataProjectile.forward += (r * sin(a)) * o.GetUp();
dataProjectile.forward.SetNormalize();
}
//We never move, so skip all the velocity calculations
dataProjectile.velocity = speed * dataProjectile.forward;
dataProjectile.lifespan = lifespan;
IprojectileIGC* p = (IprojectileIGC*)(m_pMission->CreateObject(m_nextFire, OT_projectile,
&dataProjectile, sizeof(dataProjectile)));
assert (p);
{
p->SetLauncher(m_launcher ? ((ImodelIGC*)m_launcher) : ((ImodelIGC*)this));
p->SetPosition(position);
p->SetCluster(pcluster);
p->Release();
}
nShots++;
m_nextFire += dtimeBurst;
}
while (m_nextFire < now);
if (m_ammo > 0)
{
m_ammo -= nShots;
if (m_ammo <= 0)
{
m_ammo = 0;
GetMyMission()->GetIgcSite()->KillProbeEvent(this);
}
}
}
else
{
//No shots this cycle
m_nextFire = now;
}
}
}
TmodelIGC<IprobeIGC>::Update(now);
}
}
示例3: ProcessEntity
//.........这里部分代码省略.........
}
glm::mat4 lazyOrthoAroundMap = glm::ortho(m_minWorldX, m_maxWorldX, m_minWorldY, m_maxWorldY, -m_maxWorldZ, -m_minWorldZ);
// Get the eye camera.
ECS::Entity* cameraEntity = m_world->GetTagManager()->GetEntityByTag("Camera");
RootForce::Camera* camera = m_world->GetEntityManager()->GetComponent<RootForce::Camera>(cameraEntity);
Frustum frustum = camera->m_frustum;
glm::vec4 frustumCorners[8];
frustumCorners[0] = glm::vec4(frustum.ntl, 1.0f);
frustumCorners[1] = glm::vec4(frustum.ntr, 1.0f);
frustumCorners[2] = glm::vec4(frustum.nbl, 1.0f);
frustumCorners[3] = glm::vec4(frustum.nbr, 1.0f);
frustumCorners[4] = glm::vec4(frustum.ftl, 1.0f);
frustumCorners[5] = glm::vec4(frustum.ftr, 1.0f);
frustumCorners[6] = glm::vec4(frustum.fbl, 1.0f);
frustumCorners[7] = glm::vec4(frustum.fbr, 1.0f);
// Convert camera frustrum to view space.
for(int i = 0; i < 8; i++)
{
frustumCorners[i] = camera->m_viewMatrix * frustumCorners[i];
}
// Calculate directions.
glm::vec3 directions[4];
for(int i = 0; i < 4; i++)
{
directions[i].x = glm::normalize(frustumCorners[i+4].x - frustumCorners[i].x);
directions[i].y = glm::normalize(frustumCorners[i+4].y - frustumCorners[i].y);
directions[i].z = glm::normalize(frustumCorners[i+4].z - frustumCorners[i].z);
}
static glm::vec4 localOBB[8] =
{
glm::vec4(-1.0f, -1.0f, -1.0f, 1.0f),
glm::vec4(1.0f, -1.0f, -1.0f, 1.0f),
glm::vec4(1.0f, 1.0f, -1.0f, 1.0f),
glm::vec4(1.0f, 1.0f, 1.0f, 1.0f),
glm::vec4(-1.0f, 1.0f, -1.0f, 1.0f),
glm::vec4(-1.0f, 1.0f, 1.0f, 1.0f),
glm::vec4(-1.0f, -1.0f, 1.0f, 1.0f),
glm::vec4(1.0f, -1.0f, 1.0f, 1.0f)
};
if(RENDER_SHADOW_CASCADES >= 4)
{
// Define near/far planes for the sub frustrums.
float _near[4];
_near[0] = camera->m_frustum.m_near;
_near[1] = 8.0f; //Daniel's 2k-values: 15, 60, 200
_near[2] = 40.0f;
_near[3] = 150.0f;
float _far[4];
_far[0] = _near[1];
_far[1] = _near[2];
_far[2] = _near[3];
_far[3] = camera->m_frustum.m_far;
// Create cascades.
for(int i = 0; i < RENDER_SHADOW_CASCADES; i++)
{
AABB boundingbox;
for(int p = 0; p < 4; p++)
{
glm::vec3 nearCorner;
nearCorner = glm::swizzle<glm::X, glm::Y, glm::Z>(frustumCorners[p]);
boundingbox.Expand(nearCorner + directions[p] * _near[i]);
boundingbox.Expand(nearCorner + directions[p] * _far[i]);
}
glm::vec3 center = boundingbox.GetCenter();
glm::vec3 centerInWorldSpace = glm::swizzle<glm::X, glm::Y, glm::Z>(glm::inverse(camera->m_viewMatrix) * glm::vec4(center, 1.0f));
glm::vec4 centerInViewSpace = lightSpace * glm::vec4(centerInWorldSpace, 1.0f);
float nearPlane = 1.0f;
float lookAtDistance = glm::length(centerInViewSpace - 2000.0f) + nearPlane;
float radius = glm::length(center - glm::vec3(boundingbox.m_maxX, boundingbox.m_maxY, boundingbox.m_maxZ));
float farPlane = lookAtDistance + radius;
sc.m_projectionMatrices[i] = glm::ortho(-radius, radius, -radius, radius, nearPlane, farPlane);
sc.m_viewMatrices[i] = glm::lookAt(centerInWorldSpace + tOr.GetFront() * lookAtDistance, centerInWorldSpace - tOr.GetFront() * lookAtDistance, tOr.GetUp());
sc.m_viewProjections[i] = sc.m_projectionMatrices[i] * sc.m_viewMatrices[i];
}
sc.m_projectionMatrices[RENDER_SHADOW_CASCADES-1] = OrthoProjectionFromFrustum(&camera->m_frustum, lightSpace);
sc.m_viewMatrices[RENDER_SHADOW_CASCADES-1] = lightSpace;
sc.m_viewProjections[RENDER_SHADOW_CASCADES-1] = sc.m_projectionMatrices[RENDER_SHADOW_CASCADES-1] * sc.m_viewMatrices[RENDER_SHADOW_CASCADES-1];
}
else
{
sc.m_projectionMatrices[RENDER_SHADOW_CASCADES-1] = lazyOrthoAroundMap;
sc.m_viewMatrices[RENDER_SHADOW_CASCADES-1] = lightSpace;
sc.m_viewProjections[RENDER_SHADOW_CASCADES-1] = sc.m_projectionMatrices[RENDER_SHADOW_CASCADES-1] * sc.m_viewMatrices[RENDER_SHADOW_CASCADES-1];
}
g_engineContext.m_renderer->AddShadowcaster(sc, (int)shadowcaster->m_directionalLightSlot);
}
示例4: HitWarp
void CFSShip::HitWarp(IwarpIGC * pwarp)
{
//Ignore jumps that happen too closely together
if (m_warpState == warpReady)
{
// Andon - Added check for aleph mass limits
if (m_pShip->GetMass() <= pwarp->MassLimit() || !IsPlayer() && pwarp->MassLimit() > 0 || pwarp->MassLimit() < 0)
{
if (IsPlayer())
{
m_warpState = warpNoUpdate;
}
IwarpIGC * pwarpDest = pwarp->GetDestination();
assert (pwarpDest);
IclusterIGC * pclusterDest = pwarpDest->GetCluster();
ShipStatusWarped(pwarp);
Orientation alephOrientation = pwarpDest->GetOrientation();
const Vector& v = m_pShip->GetVelocity();
float speed2 = v.LengthSquared();
float speed = float(sqrt(speed2));
if (speed2 > 0)
{
float error;
{
//How close is the ship coming to the center of the warp?
Vector dp = pwarp->GetPosition() - m_pShip->GetPosition();
float t = (dp * v) / speed2;
float d = (dp - t * v).LengthSquared();
float r = pwarp->GetRadius();
error = (d / (r*r)) + 0.125f; //Error ranges from 0.125 to 1.125
// yp: to prevent 'spin of death' in massive ships.
// This works and is explained in that the more massive the ship the less effect going through the aleph should have
// on its rotational velocity. The massive amount of inertia should decrease changes in rotational velocity.
if(m_pShip->GetMass() > 300.0f)
{
error = error * (300.0f / m_pShip->GetMass()); // the greater the mass is above 750 the less error will be applied.
}
// yp end
}
alephOrientation.Pitch(random(-error, error));
alephOrientation.Yaw(random(-error, error));
m_pShip->SetCurrentTurnRate(c_axisRoll,
m_pShip->GetCurrentTurnRate(c_axisRoll) +
random(pi * 0.5f * error, pi * 1.5f * error)); //Must be less than 2.0 * pi
}
m_pShip->SetOrientation(alephOrientation);
const Vector& backward = alephOrientation.GetBackward();
speed = -(speed + pwarp->GetMission()->GetFloatConstant(c_fcidExitWarpSpeed));
m_pShip->SetVelocity(backward * speed);
m_pShip->SetPosition(pwarpDest->GetPosition() +
(alephOrientation.GetUp() * random(2.0f, 5.0f)) +
(alephOrientation.GetRight() * random(2.0f, 5.0f)) -
(m_pShip->GetRadius() + 5.0f) * backward);
GetIGCShip()->SetCluster(pclusterDest);
}
}
}