本文整理汇总了C++中MInstruction::isMovable方法的典型用法代码示例。如果您正苦于以下问题:C++ MInstruction::isMovable方法的具体用法?C++ MInstruction::isMovable怎么用?C++ MInstruction::isMovable使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MInstruction
的用法示例。
在下文中一共展示了MInstruction::isMovable方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1:
bool
Loop::hoistInstructions(InstructionQueue &toHoist)
{
// Iterate in post-order (uses before definitions)
for (int32_t i = toHoist.length() - 1; i >= 0; i--) {
MInstruction *ins = toHoist[i];
// Don't hoist MConstantElements, MConstant and MBox
// if it doesn't enable us to hoist one of its uses.
// We want those instructions as close as possible to their use.
if (ins->isConstantElements() || ins->isConstant() || ins->isBox()) {
bool loopInvariantUse = false;
for (MUseDefIterator use(ins); use; use++) {
if (use.def()->isLoopInvariant()) {
loopInvariantUse = true;
break;
}
}
if (!loopInvariantUse)
ins->setNotLoopInvariant();
}
}
// Move all instructions to the preLoop_ block just before the control instruction.
for (size_t i = 0; i < toHoist.length(); i++) {
MInstruction *ins = toHoist[i];
// Loads may have an implicit dependency on either stores (effectful instructions) or
// control instructions so we should never move these.
JS_ASSERT(!ins->isControlInstruction());
JS_ASSERT(!ins->isEffectful());
JS_ASSERT(ins->isMovable());
if (!ins->isLoopInvariant())
continue;
if (checkHotness(ins->block())) {
ins->block()->moveBefore(preLoop_->lastIns(), ins);
ins->setNotLoopInvariant();
}
}
return true;
}
示例2: iterateLoopBlocks
Loop::LoopReturn
Loop::iterateLoopBlocks(MBasicBlock *current)
{
// Visited.
current->mark();
// Hoisting requires more finesse if the loop contains a block that
// self-dominates: there exists control flow that may enter the loop
// without passing through the loop preheader.
//
// Rather than perform a complicated analysis of the dominance graph,
// just return a soft error to ignore this loop.
if (current->immediateDominator() == current)
return LoopReturn_Skip;
// If we haven't reached the loop header yet, recursively explore predecessors
// if we haven't seen them already.
if (current != header_) {
for (size_t i = 0; i < current->numPredecessors(); i++) {
if (current->getPredecessor(i)->isMarked())
continue;
LoopReturn lr = iterateLoopBlocks(current->getPredecessor(i));
if (lr != LoopReturn_Success)
return lr;
}
}
// Add all instructions in this block (but the control instruction) to the worklist
for (MInstructionIterator i = current->begin(); i != current->end(); i++) {
MInstruction *ins = *i;
if (ins->isMovable() && !ins->isEffectful()) {
if (!insertInWorklist(ins))
return LoopReturn_Error;
}
}
return LoopReturn_Success;
}
示例3: while
bool
jit::ReorderInstructions(MIRGraph& graph)
{
// Renumber all instructions in the graph as we go.
size_t nextId = 0;
// List of the headers of any loops we are in.
Vector<MBasicBlock*, 4, SystemAllocPolicy> loopHeaders;
for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); block++) {
// Renumber all definitions inside the basic blocks.
for (MPhiIterator iter(block->phisBegin()); iter != block->phisEnd(); iter++)
iter->setId(nextId++);
for (MInstructionIterator iter(block->begin()); iter != block->end(); iter++)
iter->setId(nextId++);
// Don't reorder instructions within entry blocks, which have special requirements.
if (*block == graph.entryBlock() || *block == graph.osrBlock())
continue;
if (block->isLoopHeader()) {
if (!loopHeaders.append(*block))
return false;
}
MBasicBlock* innerLoop = loopHeaders.empty() ? nullptr : loopHeaders.back();
MInstruction* top = block->safeInsertTop();
MInstructionReverseIterator rtop = ++block->rbegin(top);
for (MInstructionIterator iter(block->begin(top)); iter != block->end(); ) {
MInstruction* ins = *iter;
// Filter out some instructions which are never reordered.
if (ins->isEffectful() ||
!ins->isMovable() ||
ins->resumePoint() ||
ins == block->lastIns())
{
iter++;
continue;
}
// Move constants with a single use in the current block to the
// start of the block. Constants won't be reordered by the logic
// below, as they have no inputs. Moving them up as high as
// possible can allow their use to be moved up further, though,
// and has no cost if the constant is emitted at its use.
if (ins->isConstant() &&
ins->hasOneUse() &&
ins->usesBegin()->consumer()->block() == *block &&
!IsFloatingPointType(ins->type()))
{
iter++;
MInstructionIterator targetIter = block->begin();
while (targetIter->isConstant() || targetIter->isInterruptCheck()) {
if (*targetIter == ins)
break;
targetIter++;
}
MoveBefore(*block, *targetIter, ins);
continue;
}
// Look for inputs where this instruction is the last use of that
// input. If we move this instruction up, the input's lifetime will
// be shortened, modulo resume point uses (which don't need to be
// stored in a register, and can be handled by the register
// allocator by just spilling at some point with no reload).
Vector<MDefinition*, 4, SystemAllocPolicy> lastUsedInputs;
for (size_t i = 0; i < ins->numOperands(); i++) {
MDefinition* input = ins->getOperand(i);
if (!input->isConstant() && IsLastUse(ins, input, innerLoop)) {
if (!lastUsedInputs.append(input))
return false;
}
}
// Don't try to move instructions which aren't the last use of any
// of their inputs (we really ought to move these down instead).
if (lastUsedInputs.length() < 2) {
iter++;
continue;
}
MInstruction* target = ins;
for (MInstructionReverseIterator riter = ++block->rbegin(ins); riter != rtop; riter++) {
MInstruction* prev = *riter;
if (prev->isInterruptCheck())
break;
// The instruction can't be moved before any of its uses.
bool isUse = false;
for (size_t i = 0; i < ins->numOperands(); i++) {
if (ins->getOperand(i) == prev) {
isUse = true;
break;
}
}
if (isUse)
//.........这里部分代码省略.........
示例4: while
bool
Loop::hoistInstructions(InstructionQueue &toHoist, InstructionQueue &boundsChecks)
{
// Hoist bounds checks first, so that hoistBoundsCheck can test for
// invariant instructions, but delay actual insertion until the end to
// handle dependencies on loop invariant instructions.
InstructionQueue hoistedChecks;
for (size_t i = 0; i < boundsChecks.length(); i++) {
MBoundsCheck *ins = boundsChecks[i]->toBoundsCheck();
if (isLoopInvariant(ins) || !isInLoop(ins))
continue;
// Try to find a test dominating the bounds check which can be
// transformed into a hoistable check. Stop after the first such check
// which could be transformed (the one which will be the closest to the
// access in the source).
MBasicBlock *block = ins->block();
while (true) {
BranchDirection direction;
MTest *branch = block->immediateDominatorBranch(&direction);
if (branch) {
MInstruction *upper, *lower;
tryHoistBoundsCheck(ins, branch, direction, &upper, &lower);
if (upper && !hoistedChecks.append(upper))
return false;
if (lower && !hoistedChecks.append(lower))
return false;
if (upper || lower) {
ins->block()->discard(ins);
break;
}
}
MBasicBlock *dom = block->immediateDominator();
if (dom == block)
break;
block = dom;
}
}
// Move all instructions to the preLoop_ block just before the control instruction.
for (size_t i = 0; i < toHoist.length(); i++) {
MInstruction *ins = toHoist[i];
// Loads may have an implicit dependency on either stores (effectful instructions) or
// control instructions so we should never move these.
JS_ASSERT(!ins->isControlInstruction());
JS_ASSERT(!ins->isEffectful());
JS_ASSERT(ins->isMovable());
if (checkHotness(ins->block())) {
ins->block()->moveBefore(preLoop_->lastIns(), ins);
ins->setNotLoopInvariant();
}
}
for (size_t i = 0; i < hoistedChecks.length(); i++) {
MInstruction *ins = hoistedChecks[i];
preLoop_->insertBefore(preLoop_->lastIns(), ins);
}
return true;
}