当前位置: 首页>>代码示例>>C++>>正文


C++ Light::Sample_L方法代码示例

本文整理汇总了C++中Light::Sample_L方法的典型用法代码示例。如果您正苦于以下问题:C++ Light::Sample_L方法的具体用法?C++ Light::Sample_L怎么用?C++ Light::Sample_L使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Light的用法示例。


在下文中一共展示了Light::Sample_L方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: Li

Spectrum BidirIntegrator::Li(const Scene *scene,
		const RayDifferential &ray,
		const Sample *sample, float *alpha) const {
	Spectrum L(0.);
	// Generate eye and light sub-paths
	BidirVertex eyePath[MAX_VERTS], lightPath[MAX_VERTS];
	int nEye = generatePath(scene, ray, sample, eyeBSDFOffset,
		eyeBSDFCompOffset, eyePath, MAX_VERTS);
	if (nEye == 0) {
		*alpha = 0.;
		return L;
	}
	*alpha = 1;
	// Choose light for bidirectional path
	int lightNum = Floor2Int(sample->oneD[lightNumOffset][0] *
		scene->lights.size());
	lightNum = min(lightNum, (int)scene->lights.size() - 1);
	Light *light = scene->lights[lightNum];
	float lightWeight = float(scene->lights.size());
	// Sample ray from light source to start light path
	Ray lightRay;
	float lightPdf;
	float u[4];
	u[0] = sample->twoD[lightPosOffset][0];
	u[1] = sample->twoD[lightPosOffset][1];
	u[2] = sample->twoD[lightDirOffset][0];
	u[3] = sample->twoD[lightDirOffset][1];
	Spectrum Le = light->Sample_L(scene, u[0], u[1], u[2], u[3],
		&lightRay, &lightPdf);
	if (lightPdf == 0.) return 0.f;
	Le = lightWeight / lightPdf;
	int nLight = generatePath(scene, lightRay, sample, lightBSDFOffset,
		lightBSDFCompOffset, lightPath, MAX_VERTS);
	// Connect bidirectional path prefixes and evaluate throughput
	Spectrum directWt(1.0);
	for (int i = 1; i <= nEye; ++i) {
		// Handle direct lighting for bidirectional integrator
		directWt /= eyePath[i-1].rrWeight;
		L += directWt *
			UniformSampleOneLight(scene, eyePath[i-1].p, eyePath[i-1].ng, eyePath[i-1].wi,
			eyePath[i-1].bsdf, sample, directLightOffset[i-1], directLightNumOffset[i-1],
			directBSDFOffset[i-1], directBSDFCompOffset[i-1]) /
			weightPath(eyePath, i, lightPath, 0);
		directWt *= eyePath[i-1].bsdf->f(eyePath[i-1].wi, eyePath[i-1].wo) *
			AbsDot(eyePath[i-1].wo, eyePath[i-1].ng) /
			eyePath[i-1].bsdfWeight;
		for (int j = 1; j <= nLight; ++j)
			L += Le * evalPath(scene, eyePath, i, lightPath, j) /
				weightPath(eyePath, i, lightPath, j);
	}
	return L;
}
开发者ID:EiffelOberon,项目名称:pbrt-v1,代码行数:52,代码来源:bidirectional.cpp

示例2: Li

Spectrum SingleScatteringFluorescenceRWLIntegrator::Li(const Scene *scene,
        const Renderer *renderer, const RayDifferential &ray,
        const Sample *sample, RNG &rng, Spectrum *T, MemoryArena &arena) const {
    VolumeRegion *vr = scene->volumeRegion;
    float t0, t1;
    if (!vr || !vr->IntersectP(ray, &t0, &t1) || (t1-t0) == 0.f) {
        *T = 1.f;
        return 0.f;
    }
    // Do single scattering volume integration in _vr_
    Spectrum Lv(0.);

    // Prepare for volume integration stepping
    int nSamples = Ceil2Int((t1-t0) / stepSize);
    float step = (t1 - t0) / nSamples;
    Spectrum Tr(1.f);
    Point p = ray(t0), pPrev;
    Vector w = -ray.d;
    t0 += sample->oneD[scatterSampleOffset][0] * step;

    // Compute sample patterns for single scattering samples
    float *lightNum = arena.Alloc<float>(nSamples);
    LDShuffleScrambled1D(1, nSamples, lightNum, rng);
    float *lightComp = arena.Alloc<float>(nSamples);
    LDShuffleScrambled1D(1, nSamples, lightComp, rng);
    float *lightPos = arena.Alloc<float>(2*nSamples);
    LDShuffleScrambled2D(1, nSamples, lightPos, rng);
    uint32_t sampOffset = 0;
    for (int i = 0; i < nSamples; ++i, t0 += step) {
        // Advance to sample at _t0_ and update _T_
        pPrev = p;
        p = ray(t0);

        Ray tauRay(pPrev, p - pPrev, 0.f, 1.f, ray.time, ray.depth);
        Spectrum stepTau = vr->tau(tauRay, 0.5f * stepSize, rng.RandomFloat());
        Tr *= Exp(-stepTau);

        // Possibly terminate ray marching if transmittance is small
        if (Tr.y() < 1e-3) {
            const float continueProb = .5f;
            if (rng.RandomFloat() > continueProb) {
                Tr = 0.f;
                break;
            }
            Tr /= continueProb;
        }

        // Compute fluorescence emission
        Spectrum sigma = vr->Mu(p, w, ray.time);
        if (!sigma.IsBlack() && scene->lights.size() > 0) {
            int nLights = scene->lights.size();
            int ln = min(Floor2Int(lightNum[sampOffset] * nLights),
                         nLights-1);
            Light *light = scene->lights[ln];

            // Add contribution of _light_ due to the in-scattering at _p_
            float pdf;
            VisibilityTester vis;
            Vector wo;
            LightSample ls(lightComp[sampOffset], lightPos[2*sampOffset],
                           lightPos[2*sampOffset+1]);
            Spectrum L = light->Sample_L(p, 0.f, ls, ray.time, &wo, &pdf, &vis);
            if (!L.IsBlack() && pdf > 0.f && vis.Unoccluded(scene)) {
                Spectrum Ld = L * vis.Transmittance(scene, renderer, NULL, rng,
                                                    arena);
                int lambdaExcIndex = light->GetLaserWavelengthIndex();
                float Lpower = Ld.GetLaserEmissionPower(lambdaExcIndex);
                float yield = vr->Yeild(Point());
                Spectrum fEx = vr->fEx(Point());
                Spectrum fEm = vr->fEm(Point());
                float scale = fEx.GetSampleValueAtWavelengthIndex(lambdaExcIndex);
                Lv += Lpower * Tr * sigma * vr->p(p, w, -wo, ray.time) *
                        scale * fEm * yield * float(nLights) / pdf;
            }
        }
        ++sampOffset;
    }
    *T = Tr;
    return Lv * step;
}
开发者ID:BlueBrain,项目名称:pbrt,代码行数:80,代码来源:fluorescencesinglerwl.cpp

示例3: Preprocess

void IGIIntegrator::Preprocess(const Scene *scene, const Camera *camera,
                               const Renderer *renderer) {
    if (scene->lights.size() == 0) return;
    MemoryArena arena;
    RNG rng;
    // Compute samples for emitted rays from lights
    vector<float> lightNum(nLightPaths * nLightSets);
    vector<float> lightSampPos(2 * nLightPaths * nLightSets, 0.f);
    vector<float> lightSampComp(nLightPaths * nLightSets, 0.f);
    vector<float> lightSampDir(2 * nLightPaths * nLightSets, 0.f);
    LDShuffleScrambled1D(nLightPaths, nLightSets, &lightNum[0], rng);
    LDShuffleScrambled2D(nLightPaths, nLightSets, &lightSampPos[0], rng);
    LDShuffleScrambled1D(nLightPaths, nLightSets, &lightSampComp[0], rng);
    LDShuffleScrambled2D(nLightPaths, nLightSets, &lightSampDir[0], rng);

    // Precompute information for light sampling densities
    Distribution1D *lightDistribution = ComputeLightSamplingCDF(scene);
    for (uint32_t s = 0; s < nLightSets; ++s) {
        for (uint32_t i = 0; i < nLightPaths; ++i) {
            // Follow path _i_ from light to create virtual lights
            int sampOffset = s*nLightPaths + i;

            // Choose light source to trace virtual light path from
            float lightPdf;
            int ln = lightDistribution->SampleDiscrete(lightNum[sampOffset],
                                                       &lightPdf);
            Light *light = scene->lights[ln];

            // Sample ray leaving light source for virtual light path
            RayDifferential ray;
            float pdf;
            LightSample ls(lightSampPos[2*sampOffset], lightSampPos[2*sampOffset+1],
                           lightSampComp[sampOffset]);
            Normal Nl;
            Spectrum alpha = light->Sample_L(scene, ls, lightSampDir[2*sampOffset],
                                             lightSampDir[2*sampOffset+1],
                                             camera->shutterOpen, &ray, &Nl, &pdf);
            if (pdf == 0.f || alpha.IsBlack()) continue;
            alpha /= pdf * lightPdf;
            Intersection isect;
            while (scene->Intersect(ray, &isect) && !alpha.IsBlack()) {
                // Create virtual light and sample new ray for path
                alpha *= renderer->Transmittance(scene, RayDifferential(ray), NULL,
                                                 rng, arena);
                Vector wo = -ray.d;
                BSDF *bsdf = isect.GetBSDF(ray, arena);

                // Create virtual light at ray intersection point
                Spectrum contrib = alpha * bsdf->rho(wo, rng) / M_PI;
                virtualLights[s].push_back(VirtualLight(isect.dg.p, isect.dg.nn, contrib,
                                                        isect.rayEpsilon));

                // Sample new ray direction and update weight for virtual light path
                Vector wi;
                float pdf;
                BSDFSample bsdfSample(rng);
                Spectrum fr = bsdf->Sample_f(wo, &wi, bsdfSample, &pdf);
                if (fr.IsBlack() || pdf == 0.f)
                    break;
                Spectrum contribScale = fr * AbsDot(wi, bsdf->dgShading.nn) / pdf;

                // Possibly terminate virtual light path with Russian roulette
                float rrProb = min(1.f, contribScale.y());
                if (rng.RandomFloat() > rrProb)
                    break;
                alpha *= contribScale / rrProb;
                ray = RayDifferential(isect.dg.p, wi, ray, isect.rayEpsilon);
            }
            arena.FreeAll();
        }
    }
    delete lightDistribution;
}
开发者ID:ChiahungTai,项目名称:pbrt-v2,代码行数:73,代码来源:igi.cpp

示例4: Li

Spectrum SingleScatteringIntegrator::Li(const Scene *scene, const Renderer *renderer,
        const RayDifferential &ray, const Sample *sample,
        Spectrum *T, MemoryArena &arena) const {
    VolumeRegion *vr = scene->volumeRegion;
    float t0, t1;
    if (!vr || !vr->IntersectP(ray, &t0, &t1)) {
        *T = 1.f;
        return 0.f;
    }
    // Do single scattering volume integration in _vr_
    Spectrum Lv(0.);

    // Prepare for volume integration stepping
    int nSamples = Ceil2Int((t1-t0) / stepSize);
    float step = (t1 - t0) / nSamples;
    Spectrum Tr(1.f);
    Point p = ray(t0), pPrev;
    Vector w = -ray.d;
    t0 += sample->oneD[scatterSampleOffset][0] * step;

    // Compute sample patterns for single scattering samples
    float *lightNum = arena.Alloc<float>(nSamples);
    LDShuffleScrambled1D(1, nSamples, lightNum, *sample->rng);
    float *lightComp = arena.Alloc<float>(nSamples);
    LDShuffleScrambled1D(1, nSamples, lightComp, *sample->rng);
    float *lightPos = arena.Alloc<float>(2*nSamples);
    LDShuffleScrambled2D(1, nSamples, lightPos, *sample->rng);
    u_int sampOffset = 0;
    for (int i = 0; i < nSamples; ++i, t0 += step) {
        // Advance to sample at _t0_ and update _T_
        pPrev = p;
        p = ray(t0);
        Ray tauRay(pPrev, p - pPrev, 0.f, 1.f, ray.time, ray.depth);
        Spectrum stepTau = vr->tau(tauRay,
                                   .5f * stepSize, sample->rng->RandomFloat());
        Tr *= Exp(-stepTau);

        // Possibly terminate ray marching if transmittance is small
        if (Tr.y() < 1e-3) {
            const float continueProb = .5f;
            if (sample->rng->RandomFloat() > continueProb) break;
            Tr /= continueProb;
        }

        // Compute single-scattering source term at _p_
        Lv += Tr * vr->Lve(p, w, ray.time);
        Spectrum ss = vr->sigma_s(p, w, ray.time);
        if (!ss.IsBlack() && scene->lights.size() > 0) {
            int nLights = scene->lights.size();
            int ln = min(Floor2Int(lightNum[sampOffset] * nLights),
                         nLights-1);
            Light *light = scene->lights[ln];
            // Add contribution of _light_ due to scattering at _p_
            float pdf;
            VisibilityTester vis;
            Vector wo;
            LightSample ls(lightComp[sampOffset], lightPos[2*sampOffset],
                           lightPos[2*sampOffset+1]);
            Spectrum L = light->Sample_L(p, 0.f, ls, ray.time, &wo, &pdf, &vis);
            if (!L.IsBlack() && pdf > 0.f && vis.Unoccluded(scene)) {
                Spectrum Ld = L * vis.Transmittance(scene, renderer, NULL, sample->rng, arena);
                Lv += Tr * ss * vr->p(p, w, -wo, ray.time) * Ld * float(nLights) / pdf;
            }
        }
        ++sampOffset;
    }
    *T = Tr;
    return Lv * step;
}
开发者ID:jwzhang,项目名称:pbrt-v2,代码行数:69,代码来源:single.cpp

示例5: Li

Spectrum PhotonVolumeIntegrator::Li(const Scene *scene, const Renderer *renderer,
        const RayDifferential &ray, const Sample *sample, RNG &rng,
        Spectrum *T, MemoryArena &arena) const {
 	
 	VolumeRegion *vr = scene->volumeRegion;
    RainbowVolume* rv = dynamic_cast<RainbowVolume*>(vr);
 	KdTree<Photon>* volumeMap = photonShooter->volumeMap; 

 	float t0, t1;
 	if (!vr || !vr->IntersectP(ray, &t0, &t1) || (t1-t0) == 0.f){
 		*T = 1.f;
 	 	return 0.f;
 	 }
 	// Do single scattering & photon multiple scattering volume integration in _vr_
 	Spectrum Lv(0.);


 	// Prepare for volume integration stepping
 	int nSamples = Ceil2Int((t1-t0) / stepSize);
 	float step = (t1 - t0) / nSamples;
 	Spectrum Tr(1.f);
 	Point p = ray(t0), pPrev;
 	Vector w = -ray.d;
 	t0 += sample->oneD[scatterSampleOffset][0] * step;

 	float *lightNum = arena.Alloc<float>(nSamples);
    LDShuffleScrambled1D(1, nSamples, lightNum, rng);
    float *lightComp = arena.Alloc<float>(nSamples);
    LDShuffleScrambled1D(1, nSamples, lightComp, rng);
    float *lightPos = arena.Alloc<float>(2*nSamples);
    LDShuffleScrambled2D(1, nSamples, lightPos, rng);
 	int sampOffset = 0;

 	ClosePhoton *lookupBuf = new ClosePhoton[nSamples];

 	for (int i = 0; i < nSamples; ++i, t0 += step) {
 		// Advance to sample at _t0_ and update _T_
 		pPrev = p;
 		p = ray(t0);

 		Ray tauRay(pPrev, p - pPrev, 0.f, 1.f, ray.time, ray.depth);

 		Spectrum stepTau = vr->tau(tauRay,.5f * stepSize, rng.RandomFloat());
 		Tr = Exp(-stepTau);

 		// Possibly terminate raymarching if transmittance is small.
 		if (Tr.y() < 1e-3) {
 			const float continueProb = .5f;
 			if (rng.RandomFloat() > continueProb){
 				Tr = 0.f;
 				break;
 			}
 			Tr /= continueProb;
 		}
		
		
 		// Compute single-scattering source term at _p_ & photon mapped MS
 		Spectrum L_i(0.);
 		Spectrum L_d(0.);
 		Spectrum L_ii(0.);
 		
 		// Lv += Tr*vr->Lve(p, w, ray.time);
 		Spectrum ss = vr->sigma_s(p, w, ray.time);
 		Spectrum sa = vr->sigma_a(p, w, ray.time);

 		if (!ss.IsBlack() && scene->lights.size() > 0) {
 			int nLights = scene->lights.size();
 			int ln =
 				min(Floor2Int(lightNum[sampOffset] * nLights),
 				    nLights-1);
 			Light *light = scene->lights[ln];
 			// Add contribution of _light_ due to scattering at _p_
 			float pdf;
 			VisibilityTester vis;
 			Vector wo;

 			LightSample ls(lightComp[sampOffset], lightPos[2*sampOffset],
                           lightPos[2*sampOffset+1]);
            Spectrum L = light->Sample_L(p, 0.f, ls, ray.time, &wo, &pdf, &vis);
            

 			if (!L.IsBlack() && pdf > 0.f && vis.Unoccluded(scene)) {

                Spectrum Ld = L * vis.Transmittance(scene,renderer, NULL, rng, arena);
                if(rv){
                    L_d = rv->rainbowReflection(Ld, ray.d, wo);
                }
                else {
                    L_d = vr->p(p, w, -wo, ray.time) * Ld * float(nLights)/pdf;
                }
 			}
 		}
		// Compute 'indirect' in-scattered radiance from photon map
        if(!rv){
            L_ii += LPhoton(volumeMap, nUsed, lookupBuf, w, p, vr, maxDistSquared, ray.time);
        }
        
		// Compute total in-scattered radiance
		if (sa.y()!=0.0 || ss.y()!=0.0)
			L_i = L_d + (ss/(sa+ss))*L_ii;
//.........这里部分代码省略.........
开发者ID:piwell,项目名称:CS348B-pbrt,代码行数:101,代码来源:photonvolume.cpp

示例6: Preprocess

void IGIIntegrator::Preprocess(const Scene *scene) {
	if (scene->lights.size() == 0) return;
	// Compute samples for emitted rays from lights
	float *lightNum = new float[nLightPaths * nLightSets];
	float *lightSamp0 = new float[2 * nLightPaths *	nLightSets];
	float *lightSamp1 = new float[2 * nLightPaths * nLightSets];
	LDShuffleScrambled1D(nLightPaths, nLightSets, lightNum);
	LDShuffleScrambled2D(nLightPaths, nLightSets, lightSamp0);
	LDShuffleScrambled2D(nLightPaths, nLightSets, lightSamp1);
	// Precompute information for light sampling densities
	int nLights = int(scene->lights.size());
	float *lightPower = (float *)alloca(nLights * sizeof(float));
	float *lightCDF = (float *)alloca((nLights+1) * sizeof(float));
	for (int i = 0; i < nLights; ++i)
		lightPower[i] = scene->lights[i]->Power(scene).y();
	float totalPower;
	ComputeStep1dCDF(lightPower, nLights, &totalPower, lightCDF);
	for (u_int s = 0; s < nLightSets; ++s) {
		for (u_int i = 0; i < nLightPaths; ++i) {
			// Follow path _i_ from light to create virtual lights
			int sampOffset = s*nLightPaths + i;
			// Choose light source to trace path from
			float lightPdf;
			int lNum = Floor2Int(SampleStep1d(lightPower, lightCDF,
				totalPower, nLights, lightNum[sampOffset], &lightPdf) * nLights);
//			fprintf(stderr, "samp %f -> num %d\n", lightNum[sampOffset], lNum);
			Light *light = scene->lights[lNum];
			// Sample ray leaving light source
			RayDifferential ray;
			float pdf;
			Spectrum alpha =
				light->Sample_L(scene, lightSamp0[2*sampOffset],
						lightSamp0[2*sampOffset+1],
						lightSamp1[2*sampOffset],
						lightSamp1[2*sampOffset+1],
						&ray, &pdf);
			if (pdf == 0.f || alpha.Black()) continue;
			alpha /= pdf * lightPdf;
//			fprintf(stderr, "initial alpha %f, light # %d\n", alpha.y(), lNum);
			Intersection isect;
			int nIntersections = 0;
			while (scene->Intersect(ray, &isect) && !alpha.Black()) {
				++nIntersections;
				alpha *= scene->Transmittance(ray);
				Vector wo = -ray.d;
				BSDF *bsdf = isect.GetBSDF(ray);
				// Create virtual light at ray intersection point
				static StatsCounter vls("IGI Integrator", "Virtual Lights Created"); //NOBOOK
				++vls; //NOBOOK
				Spectrum Le = alpha * bsdf->rho(wo) / M_PI;
//				fprintf(stderr, "\tmade light with le y %f\n", Le.y());
				virtualLights[s].push_back(VirtualLight(isect.dg.p, isect.dg.nn, Le));
				// Sample new ray direction and update weight
				Vector wi;
				float pdf;
				BxDFType flags;
				Spectrum fr = bsdf->Sample_f(wo, &wi, RandomFloat(),
								 RandomFloat(), RandomFloat(),
								 &pdf, BSDF_ALL, &flags);
				if (fr.Black() || pdf == 0.f)
					break;
				Spectrum anew = alpha * fr * AbsDot(wi, bsdf->dgShading.nn) / pdf;
				float r = anew.y() / alpha.y();
//				fprintf(stderr, "\tr = %f\n", r);
				if (RandomFloat() > r)
					break;
				alpha = anew / r;
//				fprintf(stderr, "\tnew alpha %f\n", alpha.y());
				ray = RayDifferential(isect.dg.p, wi);
			}
			BSDF::FreeAll();
		}
	}
	delete[] lightNum; // NOBOOK
	delete[] lightSamp0; // NOBOOK
	delete[] lightSamp1; // NOBOOK
}
开发者ID:superBatbrat,项目名称:pbrt-v1,代码行数:77,代码来源:igi.cpp

示例7: Preprocess

void PhotonIntegrator::Preprocess(const Scene *scene) {
	if (scene->lights.size() == 0) return;
	ProgressReporter progress(nCausticPhotons+nDirectPhotons+ // NOBOOK
		nIndirectPhotons, "Shooting photons"); // NOBOOK
	vector<Photon> causticPhotons;
	vector<Photon> directPhotons;
	vector<Photon> indirectPhotons;
	causticPhotons.reserve(nCausticPhotons); // NOBOOK
	directPhotons.reserve(nDirectPhotons); // NOBOOK
	indirectPhotons.reserve(nIndirectPhotons); // NOBOOK
	// Initialize photon shooting statistics
	static StatsCounter nshot("Photon Map",
		"Number of photons shot from lights");
	bool causticDone = (nCausticPhotons == 0);
	bool directDone = (nDirectPhotons == 0);
	bool indirectDone = (nIndirectPhotons == 0);
	while (!causticDone || !directDone || !indirectDone) {
		++nshot;
		// Give up if we're not storing enough photons
		if (nshot > 500000 &&
			(unsuccessful(nCausticPhotons,
			              causticPhotons.size(),
						  nshot) ||
			 unsuccessful(nDirectPhotons,
			              directPhotons.size(),
						  nshot) ||
			 unsuccessful(nIndirectPhotons,
			              indirectPhotons.size(),
						  nshot))) {
			Error("Unable to store enough photons.  Giving up.\n");
			return;
		}
		// Trace a photon path and store contribution
		// Choose 4D sample values for photon
		float u[4];
		u[0] = (float)RadicalInverse((int)nshot+1, 2);
		u[1] = (float)RadicalInverse((int)nshot+1, 3);
		u[2] = (float)RadicalInverse((int)nshot+1, 5);
		u[3] = (float)RadicalInverse((int)nshot+1, 7);
		// Choose light to shoot photon from
		int nLights = int(scene->lights.size());
		int lightNum =
			min(Floor2Int(nLights * (float)RadicalInverse((int)nshot+1, 11)),
			nLights-1);
		Light *light = scene->lights[lightNum];
		float lightPdf = 1.f / nLights;
		// Generate _photonRay_ from light source and initialize _alpha_
		RayDifferential photonRay;
		float pdf;
		Spectrum alpha =
			light->Sample_L(scene, u[0], u[1], u[2], u[3],
				&photonRay, &pdf);
		if (pdf == 0.f || alpha.Black()) continue;
		alpha /= pdf * lightPdf;
		if (!alpha.Black()) {
			// Follow photon path through scene and record intersections
			bool specularPath = false;
			Intersection photonIsect;
			int nIntersections = 0;
			while (scene->Intersect(photonRay, &photonIsect)) {
				++nIntersections;
				// Handle photon/surface intersection
				alpha *= scene->Transmittance(photonRay);
				Vector wo = -photonRay.d;
				BSDF *photonBSDF = photonIsect.GetBSDF(photonRay);
				BxDFType specularType = BxDFType(BSDF_REFLECTION |
					BSDF_TRANSMISSION | BSDF_SPECULAR);
				bool hasNonSpecular = (photonBSDF->NumComponents() >
					photonBSDF->NumComponents(specularType));
				if (hasNonSpecular) {
					// Deposit photon at surface
					Photon photon(photonIsect.dg.p, alpha, wo);
					if (nIntersections == 1) {
						// Process direct lighting photon intersection
						if (!directDone) {
							directPhotons.push_back(photon);
							if (directPhotons.size() == nDirectPhotons) {
								directDone = true;
								nDirectPaths = (int)nshot;
								directMap =
									new KdTree<Photon,
											   PhotonProcess>(directPhotons);
							}
							progress.Update(); // NOBOOK
						}
					}
					else if (specularPath) {
						// Process caustic photon intersection
						if (!causticDone) {
							causticPhotons.push_back(photon);
							if (causticPhotons.size() == nCausticPhotons) {
								causticDone = true;
								nCausticPaths = (int)nshot;
								causticMap =
									new KdTree<Photon,
										       PhotonProcess>(causticPhotons);
							}
							progress.Update();
						}
					}
//.........这里部分代码省略.........
开发者ID:BackupTheBerlios,项目名称:rendertoolbox-svn,代码行数:101,代码来源:photonmap.cpp


注:本文中的Light::Sample_L方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。