本文整理汇总了C++中GrDrawState::enableState方法的典型用法代码示例。如果您正苦于以下问题:C++ GrDrawState::enableState方法的具体用法?C++ GrDrawState::enableState怎么用?C++ GrDrawState::enableState使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GrDrawState
的用法示例。
在下文中一共展示了GrDrawState::enableState方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: createStencilClipMask
////////////////////////////////////////////////////////////////////////////////
// Create a 1-bit clip mask in the stencil buffer. 'devClipBounds' are in device
// (as opposed to canvas) coordinates
bool GrClipMaskManager::createStencilClipMask(InitialState initialState,
const ElementList& elements,
const SkIRect& clipSpaceIBounds,
const SkIPoint& clipSpaceToStencilOffset) {
GrAssert(kNone_ClipMaskType == fCurrClipMaskType);
GrDrawState* drawState = fGpu->drawState();
GrAssert(drawState->isClipState());
GrRenderTarget* rt = drawState->getRenderTarget();
GrAssert(NULL != rt);
// TODO: dynamically attach a SB when needed.
GrStencilBuffer* stencilBuffer = rt->getStencilBuffer();
if (NULL == stencilBuffer) {
return false;
}
int32_t genID = elements.tail()->getGenID();
if (stencilBuffer->mustRenderClip(genID, clipSpaceIBounds, clipSpaceToStencilOffset)) {
stencilBuffer->setLastClip(genID, clipSpaceIBounds, clipSpaceToStencilOffset);
GrDrawTarget::AutoGeometryAndStatePush agasp(fGpu, GrDrawTarget::kReset_ASRInit);
drawState = fGpu->drawState();
drawState->setRenderTarget(rt);
// We set the current clip to the bounds so that our recursive draws are scissored to them.
SkIRect stencilSpaceIBounds(clipSpaceIBounds);
stencilSpaceIBounds.offset(clipSpaceToStencilOffset);
GrDrawTarget::AutoClipRestore acr(fGpu, stencilSpaceIBounds);
drawState->enableState(GrDrawState::kClip_StateBit);
// Set the matrix so that rendered clip elements are transformed from clip to stencil space.
SkVector translate = {
SkIntToScalar(clipSpaceToStencilOffset.fX),
SkIntToScalar(clipSpaceToStencilOffset.fY)
};
drawState->viewMatrix()->setTranslate(translate);
#if !VISUALIZE_COMPLEX_CLIP
drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
#endif
int clipBit = stencilBuffer->bits();
SkASSERT((clipBit <= 16) && "Ganesh only handles 16b or smaller stencil buffers");
clipBit = (1 << (clipBit-1));
fGpu->clearStencilClip(stencilSpaceIBounds, kAllIn_InitialState == initialState);
// walk through each clip element and perform its set op
// with the existing clip.
for (ElementList::Iter iter(elements.headIter()); NULL != iter.get(); iter.next()) {
const Element* element = iter.get();
bool fillInverted = false;
// enabled at bottom of loop
drawState->disableState(GrGpu::kModifyStencilClip_StateBit);
// if the target is MSAA then we want MSAA enabled when the clip is soft
if (rt->isMultisampled()) {
drawState->setState(GrDrawState::kHWAntialias_StateBit, element->isAA());
}
// This will be used to determine whether the clip shape can be rendered into the
// stencil with arbitrary stencil settings.
GrPathRenderer::StencilSupport stencilSupport;
SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle);
SkRegion::Op op = element->getOp();
GrPathRenderer* pr = NULL;
SkTCopyOnFirstWrite<SkPath> clipPath;
if (Element::kRect_Type == element->getType()) {
stencilSupport = GrPathRenderer::kNoRestriction_StencilSupport;
fillInverted = false;
} else {
GrAssert(Element::kPath_Type == element->getType());
clipPath.init(element->getPath());
fillInverted = clipPath->isInverseFillType();
if (fillInverted) {
clipPath.writable()->toggleInverseFillType();
}
pr = this->getContext()->getPathRenderer(*clipPath,
stroke,
fGpu,
false,
GrPathRendererChain::kStencilOnly_DrawType,
&stencilSupport);
if (NULL == pr) {
return false;
}
}
int passes;
GrStencilSettings stencilSettings[GrStencilSettings::kMaxStencilClipPasses];
//.........这里部分代码省略.........
示例2: setupClipAndFlushState
bool GrGpu::setupClipAndFlushState(GrPrimitiveType type) {
const GrIRect* r = NULL;
GrIRect clipRect;
GrDrawState* drawState = this->drawState();
const GrRenderTarget* rt = drawState->getRenderTarget();
// GrDrawTarget should have filtered this for us
GrAssert(NULL != rt);
if (drawState->isClipState()) {
GrRect bounds;
GrRect rtRect;
rtRect.setLTRB(0, 0,
GrIntToScalar(rt->width()), GrIntToScalar(rt->height()));
if (fClip.hasConservativeBounds()) {
bounds = fClip.getConservativeBounds();
if (!bounds.intersect(rtRect)) {
bounds.setEmpty();
}
} else {
bounds = rtRect;
}
bounds.roundOut(&clipRect);
if (clipRect.isEmpty()) {
clipRect.setLTRB(0,0,0,0);
}
r = &clipRect;
// use the stencil clip if we can't represent the clip as a rectangle.
fClipInStencil = !fClip.isRect() && !fClip.isEmpty() &&
!bounds.isEmpty();
// TODO: dynamically attach a SB when needed.
GrStencilBuffer* stencilBuffer = rt->getStencilBuffer();
if (fClipInStencil && NULL == stencilBuffer) {
return false;
}
if (fClipInStencil &&
stencilBuffer->mustRenderClip(fClip, rt->width(), rt->height())) {
stencilBuffer->setLastClip(fClip, rt->width(), rt->height());
// we set the current clip to the bounds so that our recursive
// draws are scissored to them. We use the copy of the complex clip
// we just stashed on the SB to render from. We set it back after
// we finish drawing it into the stencil.
const GrClip& clip = stencilBuffer->getLastClip();
fClip.setFromRect(bounds);
AutoStateRestore asr(this);
AutoGeometryPush agp(this);
drawState->setViewMatrix(GrMatrix::I());
this->flushScissor(NULL);
#if !VISUALIZE_COMPLEX_CLIP
drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
#else
drawState->disableState(GrDrawState::kNoColorWrites_StateBit);
#endif
int count = clip.getElementCount();
int clipBit = stencilBuffer->bits();
SkASSERT((clipBit <= 16) &&
"Ganesh only handles 16b or smaller stencil buffers");
clipBit = (1 << (clipBit-1));
bool clearToInside;
GrSetOp startOp = kReplace_SetOp; // suppress warning
int start = process_initial_clip_elements(clip,
rtRect,
&clearToInside,
&startOp);
this->clearStencilClip(clipRect, clearToInside);
// walk through each clip element and perform its set op
// with the existing clip.
for (int c = start; c < count; ++c) {
GrPathFill fill;
bool fillInverted;
// enabled at bottom of loop
drawState->disableState(kModifyStencilClip_StateBit);
bool canRenderDirectToStencil; // can the clip element be drawn
// directly to the stencil buffer
// with a non-inverted fill rule
// without extra passes to
// resolve in/out status.
GrPathRenderer* pr = NULL;
const GrPath* clipPath = NULL;
GrPathRenderer::AutoClearPath arp;
if (kRect_ClipType == clip.getElementType(c)) {
canRenderDirectToStencil = true;
fill = kEvenOdd_PathFill;
fillInverted = false;
// there is no point in intersecting a screen filling
//.........这里部分代码省略.........
示例3: createStencilClipMask
////////////////////////////////////////////////////////////////////////////////
// Create a 1-bit clip mask in the stencil buffer. 'devClipBounds' are in device
// (as opposed to canvas) coordinates
bool GrClipMaskManager::createStencilClipMask(const GrClipData& clipDataIn,
const GrIRect& devClipBounds) {
GrAssert(kNone_ClipMaskType == fCurrClipMaskType);
GrDrawState* drawState = fGpu->drawState();
GrAssert(drawState->isClipState());
GrRenderTarget* rt = drawState->getRenderTarget();
GrAssert(NULL != rt);
// TODO: dynamically attach a SB when needed.
GrStencilBuffer* stencilBuffer = rt->getStencilBuffer();
if (NULL == stencilBuffer) {
return false;
}
if (stencilBuffer->mustRenderClip(clipDataIn, rt->width(), rt->height())) {
stencilBuffer->setLastClip(clipDataIn, rt->width(), rt->height());
// we set the current clip to the bounds so that our recursive
// draws are scissored to them. We use the copy of the complex clip
// we just stashed on the SB to render from. We set it back after
// we finish drawing it into the stencil.
const GrClipData* oldClipData = fGpu->getClip();
// The origin of 'newClipData' is (0, 0) so it is okay to place
// a device-coordinate bound in 'newClipStack'
SkClipStack newClipStack(devClipBounds);
GrClipData newClipData;
newClipData.fClipStack = &newClipStack;
fGpu->setClip(&newClipData);
GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit);
drawState = fGpu->drawState();
drawState->setRenderTarget(rt);
GrDrawTarget::AutoGeometryPush agp(fGpu);
if (0 != clipDataIn.fOrigin.fX || 0 != clipDataIn.fOrigin.fY) {
// Add the saveLayer's offset to the view matrix rather than
// offset each individual draw
drawState->viewMatrix()->setTranslate(
SkIntToScalar(-clipDataIn.fOrigin.fX),
SkIntToScalar(-clipDataIn.fOrigin.fY));
}
#if !VISUALIZE_COMPLEX_CLIP
drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
#endif
int clipBit = stencilBuffer->bits();
SkASSERT((clipBit <= 16) &&
"Ganesh only handles 16b or smaller stencil buffers");
clipBit = (1 << (clipBit-1));
GrIRect devRTRect = GrIRect::MakeWH(rt->width(), rt->height());
bool clearToInside;
SkRegion::Op firstOp = SkRegion::kReplace_Op; // suppress warning
SkClipStack::Iter iter(*oldClipData->fClipStack,
SkClipStack::Iter::kBottom_IterStart);
const SkClipStack::Iter::Clip* clip = process_initial_clip_elements(&iter,
devRTRect,
&clearToInside,
&firstOp,
clipDataIn);
fGpu->clearStencilClip(devClipBounds, clearToInside);
bool first = true;
// walk through each clip element and perform its set op
// with the existing clip.
for ( ; NULL != clip; clip = iter.nextCombined()) {
GrPathFill fill;
bool fillInverted = false;
// enabled at bottom of loop
drawState->disableState(GrGpu::kModifyStencilClip_StateBit);
// if the target is MSAA then we want MSAA enabled when the clip is soft
if (rt->isMultisampled()) {
drawState->setState(GrDrawState::kHWAntialias_StateBit, clip->fDoAA);
}
// Can the clip element be drawn directly to the stencil buffer
// with a non-inverted fill rule without extra passes to
// resolve in/out status?
bool canRenderDirectToStencil = false;
SkRegion::Op op = clip->fOp;
if (first) {
first = false;
op = firstOp;
}
GrPathRenderer* pr = NULL;
//.........这里部分代码省略.........
示例4: createAlphaClipMask
////////////////////////////////////////////////////////////////////////////////
// Create a 8-bit clip mask in alpha
GrTexture* GrClipMaskManager::createAlphaClipMask(int32_t clipStackGenID,
InitialState initialState,
const ElementList& elements,
const SkIRect& clipSpaceIBounds) {
GrAssert(kNone_ClipMaskType == fCurrClipMaskType);
GrTexture* result;
if (this->getMaskTexture(clipStackGenID, clipSpaceIBounds, &result)) {
fCurrClipMaskType = kAlpha_ClipMaskType;
return result;
}
if (NULL == result) {
fAACache.reset();
return NULL;
}
GrDrawTarget::AutoGeometryAndStatePush agasp(fGpu, GrDrawTarget::kReset_ASRInit);
GrDrawState* drawState = fGpu->drawState();
// The top-left of the mask corresponds to the top-left corner of the bounds.
SkVector clipToMaskOffset = {
SkIntToScalar(-clipSpaceIBounds.fLeft),
SkIntToScalar(-clipSpaceIBounds.fTop)
};
// The texture may be larger than necessary, this rect represents the part of the texture
// we populate with a rasterization of the clip.
SkIRect maskSpaceIBounds = SkIRect::MakeWH(clipSpaceIBounds.width(), clipSpaceIBounds.height());
// We're drawing a coverage mask and want coverage to be run through the blend function.
drawState->enableState(GrDrawState::kCoverageDrawing_StateBit);
// Set the matrix so that rendered clip elements are transformed to mask space from clip space.
drawState->viewMatrix()->setTranslate(clipToMaskOffset);
// The scratch texture that we are drawing into can be substantially larger than the mask. Only
// clear the part that we care about.
fGpu->clear(&maskSpaceIBounds,
kAllIn_InitialState == initialState ? 0xffffffff : 0x00000000,
result->asRenderTarget());
// When we use the stencil in the below loop it is important to have this clip installed.
// The second pass that zeros the stencil buffer renders the rect maskSpaceIBounds so the first
// pass must not set values outside of this bounds or stencil values outside the rect won't be
// cleared.
GrDrawTarget::AutoClipRestore acr(fGpu, maskSpaceIBounds);
drawState->enableState(GrDrawState::kClip_StateBit);
GrAutoScratchTexture temp;
// walk through each clip element and perform its set op
for (ElementList::Iter iter = elements.headIter(); iter.get(); iter.next()) {
const Element* element = iter.get();
SkRegion::Op op = element->getOp();
bool invert = element->isInverseFilled();
if (invert || SkRegion::kIntersect_Op == op || SkRegion::kReverseDifference_Op == op) {
GrPathRenderer* pr = NULL;
bool useTemp = !this->canStencilAndDrawElement(result, element, &pr);
GrTexture* dst;
// This is the bounds of the clip element in the space of the alpha-mask. The temporary
// mask buffer can be substantially larger than the actually clip stack element. We
// touch the minimum number of pixels necessary and use decal mode to combine it with
// the accumulator.
GrIRect maskSpaceElementIBounds;
if (useTemp) {
if (invert) {
maskSpaceElementIBounds = maskSpaceIBounds;
} else {
GrRect elementBounds = element->getBounds();
elementBounds.offset(clipToMaskOffset);
elementBounds.roundOut(&maskSpaceElementIBounds);
}
this->getTemp(maskSpaceIBounds.fRight, maskSpaceIBounds.fBottom, &temp);
if (NULL == temp.texture()) {
fAACache.reset();
return NULL;
}
dst = temp.texture();
// clear the temp target and set blend to replace
fGpu->clear(&maskSpaceElementIBounds,
invert ? 0xffffffff : 0x00000000,
dst->asRenderTarget());
setup_boolean_blendcoeffs(drawState, SkRegion::kReplace_Op);
} else {
// draw directly into the result with the stencil set to make the pixels affected
// by the clip shape be non-zero.
dst = result;
GR_STATIC_CONST_SAME_STENCIL(kStencilInElement,
kReplace_StencilOp,
kReplace_StencilOp,
kAlways_StencilFunc,
0xffff,
0xffff,
0xffff);
drawState->setStencil(kStencilInElement);
//.........这里部分代码省略.........
示例5: createStencilClipMask
////////////////////////////////////////////////////////////////////////////////
// Create a 1-bit clip mask in the stencil buffer
bool GrClipMaskManager::createStencilClipMask(GrGpu* gpu,
const GrClip& clipIn,
const GrRect& bounds,
ScissoringSettings* scissorSettings) {
GrAssert(fClipMaskInStencil);
GrDrawState* drawState = gpu->drawState();
GrAssert(drawState->isClipState());
GrRenderTarget* rt = drawState->getRenderTarget();
GrAssert(NULL != rt);
// TODO: dynamically attach a SB when needed.
GrStencilBuffer* stencilBuffer = rt->getStencilBuffer();
if (NULL == stencilBuffer) {
return false;
}
if (stencilBuffer->mustRenderClip(clipIn, rt->width(), rt->height())) {
stencilBuffer->setLastClip(clipIn, rt->width(), rt->height());
// we set the current clip to the bounds so that our recursive
// draws are scissored to them. We use the copy of the complex clip
// we just stashed on the SB to render from. We set it back after
// we finish drawing it into the stencil.
const GrClip& clipCopy = stencilBuffer->getLastClip();
gpu->setClip(GrClip(bounds));
GrDrawTarget::AutoStateRestore asr(gpu, GrDrawTarget::kReset_ASRInit);
drawState = gpu->drawState();
drawState->setRenderTarget(rt);
GrDrawTarget::AutoGeometryPush agp(gpu);
gpu->disableScissor();
#if !VISUALIZE_COMPLEX_CLIP
drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
#endif
int count = clipCopy.getElementCount();
int clipBit = stencilBuffer->bits();
SkASSERT((clipBit <= 16) &&
"Ganesh only handles 16b or smaller stencil buffers");
clipBit = (1 << (clipBit-1));
GrIRect rtRect = GrIRect::MakeWH(rt->width(), rt->height());
bool clearToInside;
SkRegion::Op startOp = SkRegion::kReplace_Op; // suppress warning
int start = process_initial_clip_elements(clipCopy,
rtRect,
&clearToInside,
&startOp);
gpu->clearStencilClip(scissorSettings->fScissorRect, clearToInside);
// walk through each clip element and perform its set op
// with the existing clip.
for (int c = start; c < count; ++c) {
GrPathFill fill;
bool fillInverted;
// enabled at bottom of loop
drawState->disableState(GrGpu::kModifyStencilClip_StateBit);
bool canRenderDirectToStencil; // can the clip element be drawn
// directly to the stencil buffer
// with a non-inverted fill rule
// without extra passes to
// resolve in/out status.
SkRegion::Op op = (c == start) ? startOp : clipCopy.getOp(c);
GrPathRenderer* pr = NULL;
const SkPath* clipPath = NULL;
if (kRect_ClipType == clipCopy.getElementType(c)) {
canRenderDirectToStencil = true;
fill = kEvenOdd_PathFill;
fillInverted = false;
// there is no point in intersecting a screen filling
// rectangle.
if (SkRegion::kIntersect_Op == op &&
contains(clipCopy.getRect(c), rtRect)) {
continue;
}
} else {
fill = clipCopy.getPathFill(c);
fillInverted = GrIsFillInverted(fill);
fill = GrNonInvertedFill(fill);
clipPath = &clipCopy.getPath(c);
pr = this->getClipPathRenderer(gpu, *clipPath, fill, false);
if (NULL == pr) {
fClipMaskInStencil = false;
gpu->setClip(clipCopy); // restore to the original
return false;
}
canRenderDirectToStencil =
!pr->requiresStencilPass(*clipPath, fill, gpu);
//.........这里部分代码省略.........
示例6: onDrawPath
//.........这里部分代码省略.........
}
if (antiAlias) {
// Run the tesselator once to get the boundaries.
GrBoundaryTess btess(count, fill_type_to_glu_winding_rule(fill));
btess.addVertices(base, subpathVertCount, subpathCnt);
GrMatrix inverse, matrix = drawState->getViewMatrix();
if (!drawState->getViewInverse(&inverse)) {
return false;
}
if (btess.vertices().count() > USHRT_MAX) {
return false;
}
// Inflate the boundary, and run the tesselator again to generate
// interior polys.
const GrPointArray& contourPoints = btess.contourPoints();
const GrIndexArray& contours = btess.contours();
GrEdgePolygonTess ptess(contourPoints.count(), GLU_TESS_WINDING_NONZERO, matrix);
size_t i = 0;
Sk_gluTessBeginPolygon(ptess.tess(), &ptess);
for (int contour = 0; contour < contours.count(); ++contour) {
int count = contours[contour];
GrEdgeArray edges;
int newCount = computeEdgesAndIntersect(matrix, inverse, &btess.contourPoints()[i], count, &edges, 1.0f);
Sk_gluTessBeginContour(ptess.tess());
for (int j = 0; j < newCount; j++) {
ptess.addVertex(contourPoints[i + j], ptess.vertices().count());
}
i += count;
Sk_gluTessEndContour(ptess.tess());
}
Sk_gluTessEndPolygon(ptess.tess());
if (ptess.vertices().count() > USHRT_MAX) {
return false;
}
// Draw the resulting polys and upload their edge data.
drawState->enableState(GrDrawState::kEdgeAAConcave_StateBit);
const GrPointArray& vertices = ptess.vertices();
const GrIndexArray& indices = ptess.indices();
const GrDrawState::Edge* edges = ptess.edges();
GR_DEBUGASSERT(indices.count() % 3 == 0);
for (int i = 0; i < indices.count(); i += 3) {
GrPoint tri_verts[3];
int index0 = indices[i];
int index1 = indices[i + 1];
int index2 = indices[i + 2];
tri_verts[0] = vertices[index0];
tri_verts[1] = vertices[index1];
tri_verts[2] = vertices[index2];
GrDrawState::Edge tri_edges[6];
int t = 0;
const GrDrawState::Edge& edge0 = edges[index0 * 2];
const GrDrawState::Edge& edge1 = edges[index0 * 2 + 1];
const GrDrawState::Edge& edge2 = edges[index1 * 2];
const GrDrawState::Edge& edge3 = edges[index1 * 2 + 1];
const GrDrawState::Edge& edge4 = edges[index2 * 2];
const GrDrawState::Edge& edge5 = edges[index2 * 2 + 1];
if (validEdge(edge0) && validEdge(edge1)) {
tri_edges[t++] = edge0;
tri_edges[t++] = edge1;
}
if (validEdge(edge2) && validEdge(edge3)) {
tri_edges[t++] = edge2;
tri_edges[t++] = edge3;
}
if (validEdge(edge4) && validEdge(edge5)) {
tri_edges[t++] = edge4;
tri_edges[t++] = edge5;
}
drawState->setEdgeAAData(&tri_edges[0], t);
target->setVertexSourceToArray(layout, &tri_verts[0], 3);
target->drawNonIndexed(kTriangles_PrimitiveType, 0, 3);
}
drawState->setEdgeAAData(NULL, 0);
drawState->disableState(GrDrawState::kEdgeAAConcave_StateBit);
return true;
}
GrPolygonTess ptess(count, fill_type_to_glu_winding_rule(fill));
ptess.addVertices(base, subpathVertCount, subpathCnt);
const GrPointArray& vertices = ptess.vertices();
const GrIndexArray& indices = ptess.indices();
if (indices.count() > 0) {
target->setVertexSourceToArray(layout, vertices.begin(), vertices.count());
target->setIndexSourceToArray(indices.begin(), indices.count());
target->drawIndexed(kTriangles_PrimitiveType,
0,
0,
vertices.count(),
indices.count());
}
return true;
}
示例7: internalDrawPath
//.........这里部分代码省略.........
if (reverse) {
passes[1] = &gInvEOColorPass;
} else {
passes[1] = &gEOColorPass;
}
}
drawFace[0] = drawFace[1] = GrDrawState::kBoth_DrawFace;
break;
case SkPath::kInverseWinding_FillType:
reverse = true;
// fallthrough
case SkPath::kWinding_FillType:
if (fSeparateStencil) {
if (fStencilWrapOps) {
passes[0] = &gWindStencilSeparateWithWrap;
} else {
passes[0] = &gWindStencilSeparateNoWrap;
}
passCount = 2;
drawFace[0] = GrDrawState::kBoth_DrawFace;
} else {
if (fStencilWrapOps) {
passes[0] = &gWindSingleStencilWithWrapInc;
passes[1] = &gWindSingleStencilWithWrapDec;
} else {
passes[0] = &gWindSingleStencilNoWrapInc;
passes[1] = &gWindSingleStencilNoWrapDec;
}
// which is cw and which is ccw is arbitrary.
drawFace[0] = GrDrawState::kCW_DrawFace;
drawFace[1] = GrDrawState::kCCW_DrawFace;
passCount = 3;
}
if (stencilOnly) {
lastPassIsBounds = false;
--passCount;
} else {
lastPassIsBounds = true;
drawFace[passCount-1] = GrDrawState::kBoth_DrawFace;
if (reverse) {
passes[passCount-1] = &gInvWindColorPass;
} else {
passes[passCount-1] = &gWindColorPass;
}
}
break;
default:
SkDEBUGFAIL("Unknown path fFill!");
return false;
}
}
}
SkRect devBounds;
GetPathDevBounds(path, drawState->getRenderTarget(), viewM, &devBounds);
for (int p = 0; p < passCount; ++p) {
drawState->setDrawFace(drawFace[p]);
if (NULL != passes[p]) {
*drawState->stencil() = *passes[p];
}
if (lastPassIsBounds && (p == passCount-1)) {
if (!colorWritesWereDisabled) {
drawState->disableState(GrDrawState::kNoColorWrites_StateBit);
}
SkRect bounds;
GrDrawState::AutoViewMatrixRestore avmr;
if (reverse) {
SkASSERT(NULL != drawState->getRenderTarget());
// draw over the dev bounds (which will be the whole dst surface for inv fill).
bounds = devBounds;
SkMatrix vmi;
// mapRect through persp matrix may not be correct
if (!drawState->getViewMatrix().hasPerspective() &&
drawState->getViewInverse(&vmi)) {
vmi.mapRect(&bounds);
} else {
avmr.setIdentity(drawState);
}
} else {
bounds = path.getBounds();
}
GrDrawTarget::AutoGeometryAndStatePush agasp(target, GrDrawTarget::kPreserve_ASRInit);
target->drawSimpleRect(bounds, NULL);
} else {
if (passCount > 1) {
drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
}
if (indexCnt) {
target->drawIndexed(primType, 0, 0,
vertexCnt, indexCnt, &devBounds);
} else {
target->drawNonIndexed(primType, 0, vertexCnt, &devBounds);
}
}
}
return true;
}
示例8: drawRect
//.........这里部分代码省略.........
}
GrMatrix combinedMatrix = drawState->getViewMatrix();
// We go to device space so that matrix changes allow us to concat
// rect draws. When the caller has provided explicit source rects
// then we don't want to modify the sampler matrices. Otherwise we do
// we have to account for the view matrix change in the sampler
// matrices.
StageMask devCoordMask = (NULL == srcRects) ? stageMask : 0;
GrDrawTarget::AutoDeviceCoordDraw adcd(this, devCoordMask);
if (NULL != matrix) {
combinedMatrix.preConcat(*matrix);
}
SetRectVertices(rect, &combinedMatrix, srcRects, srcMatrices, layout, geo.vertices());
// we don't want to miss an opportunity to batch rects together
// simply because the clip has changed if the clip doesn't affect
// the rect.
bool disabledClip = false;
if (drawState->isClipState() && fClip.isRect()) {
GrRect clipRect = fClip.getRect(0);
// If the clip rect touches the edge of the viewport, extended it
// out (close) to infinity to avoid bogus intersections.
// We might consider a more exact clip to viewport if this
// conservative test fails.
const GrRenderTarget* target = drawState->getRenderTarget();
if (0 >= clipRect.fLeft) {
clipRect.fLeft = GR_ScalarMin;
}
if (target->width() <= clipRect.fRight) {
clipRect.fRight = GR_ScalarMax;
}
if (0 >= clipRect.top()) {
clipRect.fTop = GR_ScalarMin;
}
if (target->height() <= clipRect.fBottom) {
clipRect.fBottom = GR_ScalarMax;
}
int stride = VertexSize(layout);
bool insideClip = true;
for (int v = 0; v < 4; ++v) {
const GrPoint& p = *GetVertexPoint(geo.vertices(), v, stride);
if (!clipRect.contains(p)) {
insideClip = false;
break;
}
}
if (insideClip) {
drawState->disableState(GrDrawState::kClip_StateBit);
disabledClip = true;
}
}
if (!needsNewClip() && !needsNewState() && fCurrQuad > 0 &&
fCurrQuad < fMaxQuads && layout == fLastRectVertexLayout) {
int vsize = VertexSize(layout);
Draw& lastDraw = fDraws.back();
GrAssert(lastDraw.fIndexBuffer == fQuadIndexBuffer);
GrAssert(kTriangles_PrimitiveType == lastDraw.fPrimitiveType);
GrAssert(0 == lastDraw.fVertexCount % 4);
GrAssert(0 == lastDraw.fIndexCount % 6);
GrAssert(0 == lastDraw.fStartIndex);
GeometryPoolState& poolState = fGeoPoolStateStack.back();
bool clearSinceLastDraw =
fClears.count() &&
fClears.back().fBeforeDrawIdx == fDraws.count();
appendToPreviousDraw =
!clearSinceLastDraw &&
lastDraw.fVertexBuffer == poolState.fPoolVertexBuffer &&
(fCurrQuad * 4 + lastDraw.fStartVertex) == poolState.fPoolStartVertex;
if (appendToPreviousDraw) {
lastDraw.fVertexCount += 4;
lastDraw.fIndexCount += 6;
fCurrQuad += 1;
// we reserved above, so we should be the first
// use of this vertex reserveation.
GrAssert(0 == poolState.fUsedPoolVertexBytes);
poolState.fUsedPoolVertexBytes = 4 * vsize;
}
}
if (!appendToPreviousDraw) {
this->setIndexSourceToBuffer(fQuadIndexBuffer);
this->drawIndexed(kTriangles_PrimitiveType, 0, 0, 4, 6);
fCurrQuad = 1;
fLastRectVertexLayout = layout;
}
if (disabledClip) {
drawState->enableState(GrDrawState::kClip_StateBit);
}
fInstancedDrawTracker.reset();
} else {
INHERITED::drawRect(rect, matrix, stageMask, srcRects, srcMatrices);
}
}
示例9: internalDrawPath
//.........这里部分代码省略.........
passes[1] = &gInvEOColorPass;
} else {
passes[1] = &gEOColorPass;
}
}
drawFace[0] = drawFace[1] = GrDrawState::kBoth_DrawFace;
break;
case kInverseWinding_GrPathFill:
reverse = true;
// fallthrough
case kWinding_GrPathFill:
if (fSeparateStencil) {
if (fStencilWrapOps) {
passes[0] = &gWindStencilSeparateWithWrap;
} else {
passes[0] = &gWindStencilSeparateNoWrap;
}
passCount = 2;
drawFace[0] = GrDrawState::kBoth_DrawFace;
} else {
if (fStencilWrapOps) {
passes[0] = &gWindSingleStencilWithWrapInc;
passes[1] = &gWindSingleStencilWithWrapDec;
} else {
passes[0] = &gWindSingleStencilNoWrapInc;
passes[1] = &gWindSingleStencilNoWrapDec;
}
// which is cw and which is ccw is arbitrary.
drawFace[0] = GrDrawState::kCW_DrawFace;
drawFace[1] = GrDrawState::kCCW_DrawFace;
passCount = 3;
}
if (stencilOnly) {
lastPassIsBounds = false;
--passCount;
} else {
lastPassIsBounds = true;
drawFace[passCount-1] = GrDrawState::kBoth_DrawFace;
if (reverse) {
passes[passCount-1] = &gInvWindColorPass;
} else {
passes[passCount-1] = &gWindColorPass;
}
}
break;
default:
GrAssert(!"Unknown path fFill!");
return false;
}
}
}
{
for (int p = 0; p < passCount; ++p) {
drawState->setDrawFace(drawFace[p]);
if (NULL != passes[p]) {
*drawState->stencil() = *passes[p];
}
if (lastPassIsBounds && (p == passCount-1)) {
if (!colorWritesWereDisabled) {
drawState->disableState(GrDrawState::kNoColorWrites_StateBit);
}
GrRect bounds;
GrDrawState::AutoDeviceCoordDraw adcd;
if (reverse) {
GrAssert(NULL != drawState->getRenderTarget());
// draw over the whole world.
bounds.setLTRB(0, 0,
GrIntToScalar(drawState->getRenderTarget()->width()),
GrIntToScalar(drawState->getRenderTarget()->height()));
GrMatrix vmi;
// mapRect through persp matrix may not be correct
if (!drawState->getViewMatrix().hasPerspective() &&
drawState->getViewInverse(&vmi)) {
vmi.mapRect(&bounds);
} else {
adcd.set(drawState);
}
} else {
bounds = path.getBounds();
}
GrDrawTarget::AutoGeometryPush agp(target);
target->drawSimpleRect(bounds, NULL);
} else {
if (passCount > 1) {
drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
}
if (indexCnt) {
target->drawIndexed(primType, 0, 0,
vertexCnt, indexCnt);
} else {
target->drawNonIndexed(primType, 0, vertexCnt);
}
}
}
}
return true;
}
示例10: drawRect
//.........这里部分代码省略.........
: this->getDrawState().getColor());
// we don't want to miss an opportunity to batch rects together
// simply because the clip has changed if the clip doesn't affect
// the rect.
bool disabledClip = false;
if (drawState->isClipState()) {
GrRect devClipRect;
bool isIntersectionOfRects = false;
const GrClipData* clip = this->getClip();
clip->fClipStack->getConservativeBounds(-clip->fOrigin.fX,
-clip->fOrigin.fY,
drawState->getRenderTarget()->width(),
drawState->getRenderTarget()->height(),
&devClipRect,
&isIntersectionOfRects);
if (isIntersectionOfRects) {
// If the clip rect touches the edge of the viewport, extended it
// out (close) to infinity to avoid bogus intersections.
// We might consider a more exact clip to viewport if this
// conservative test fails.
const GrRenderTarget* target = drawState->getRenderTarget();
if (0 >= devClipRect.fLeft) {
devClipRect.fLeft = SK_ScalarMin;
}
if (target->width() <= devClipRect.fRight) {
devClipRect.fRight = SK_ScalarMax;
}
if (0 >= devClipRect.top()) {
devClipRect.fTop = SK_ScalarMin;
}
if (target->height() <= devClipRect.fBottom) {
devClipRect.fBottom = SK_ScalarMax;
}
int stride = GrDrawState::VertexSize(layout);
bool insideClip = true;
for (int v = 0; v < 4; ++v) {
const GrPoint& p = *GrDrawState::GetVertexPoint(geo.vertices(), v, stride);
if (!devClipRect.contains(p)) {
insideClip = false;
break;
}
}
if (insideClip) {
drawState->disableState(GrDrawState::kClip_StateBit);
disabledClip = true;
}
}
}
if (!this->needsNewClip() &&
!this->needsNewState() &&
fCurrQuad > 0 &&
fCurrQuad < fMaxQuads &&
layout == fLastRectVertexLayout) {
int vsize = GrDrawState::VertexSize(layout);
Draw& lastDraw = fDraws.back();
GrAssert(lastDraw.fIndexBuffer == fQuadIndexBuffer);
GrAssert(kTriangles_GrPrimitiveType == lastDraw.fPrimitiveType);
GrAssert(0 == lastDraw.fVertexCount % 4);
GrAssert(0 == lastDraw.fIndexCount % 6);
GrAssert(0 == lastDraw.fStartIndex);
GeometryPoolState& poolState = fGeoPoolStateStack.back();
appendToPreviousDraw =
kDraw_Cmd == fCmds.back() &&
lastDraw.fVertexBuffer == poolState.fPoolVertexBuffer &&
(fCurrQuad * 4 + lastDraw.fStartVertex) == poolState.fPoolStartVertex;
if (appendToPreviousDraw) {
lastDraw.fVertexCount += 4;
lastDraw.fIndexCount += 6;
fCurrQuad += 1;
// we reserved above, so we should be the first
// use of this vertex reservation.
GrAssert(0 == poolState.fUsedPoolVertexBytes);
poolState.fUsedPoolVertexBytes = 4 * vsize;
}
}
if (!appendToPreviousDraw) {
this->setIndexSourceToBuffer(fQuadIndexBuffer);
this->drawIndexed(kTriangles_GrPrimitiveType, 0, 0, 4, 6);
fCurrQuad = 1;
fLastRectVertexLayout = layout;
}
if (disabledClip) {
drawState->enableState(GrDrawState::kClip_StateBit);
}
fInstancedDrawTracker.reset();
} else {
INHERITED::drawRect(rect, matrix, srcRects, srcMatrices);
}
}
示例11: onDrawPath
//.........这里部分代码省略.........
case kWinding_PathFill:
if (fSeparateStencil) {
if (fStencilWrapOps) {
passes[0] = &gWindStencilSeparateWithWrap;
} else {
passes[0] = &gWindStencilSeparateNoWrap;
}
passCount = 2;
drawFace[0] = GrDrawState::kBoth_DrawFace;
} else {
if (fStencilWrapOps) {
passes[0] = &gWindSingleStencilWithWrapInc;
passes[1] = &gWindSingleStencilWithWrapDec;
} else {
passes[0] = &gWindSingleStencilNoWrapInc;
passes[1] = &gWindSingleStencilNoWrapDec;
}
// which is cw and which is ccw is arbitrary.
drawFace[0] = GrDrawState::kCW_DrawFace;
drawFace[1] = GrDrawState::kCCW_DrawFace;
passCount = 3;
}
if (stencilOnly) {
lastPassIsBounds = false;
--passCount;
} else {
lastPassIsBounds = true;
drawFace[passCount-1] = GrDrawState::kBoth_DrawFace;
if (reverse) {
passes[passCount-1] = &gInvWindColorPass;
} else {
passes[passCount-1] = &gWindColorPass;
}
}
break;
default:
GrAssert(!"Unknown path fFill!");
return;
}
}
}
{
for (int p = 0; p < passCount; ++p) {
drawState->setDrawFace(drawFace[p]);
if (NULL != passes[p]) {
*drawState->stencil() = *passes[p];
}
if (lastPassIsBounds && (p == passCount-1)) {
if (!colorWritesWereDisabled) {
drawState->disableState(GrDrawState::kNoColorWrites_StateBit);
}
GrRect bounds;
if (reverse) {
GrAssert(NULL != drawState->getRenderTarget());
// draw over the whole world.
bounds.setLTRB(0, 0,
GrIntToScalar(drawState->getRenderTarget()->width()),
GrIntToScalar(drawState->getRenderTarget()->height()));
GrMatrix vmi;
// mapRect through persp matrix may not be correct
if (!drawState->getViewMatrix().hasPerspective() &&
drawState->getViewInverse(&vmi)) {
vmi.mapRect(&bounds);
} else {
if (stageMask) {
if (!drawState->getViewInverse(&vmi)) {
GrPrintf("Could not invert matrix.");
return;
}
drawState->preConcatSamplerMatrices(stageMask, vmi);
}
drawState->setViewMatrix(GrMatrix::I());
}
} else {
bounds = fPath->getBounds();
bounds.offset(fTranslate);
}
GrDrawTarget::AutoGeometryPush agp(fTarget);
fTarget->drawSimpleRect(bounds, NULL, stageMask);
} else {
if (passCount > 1) {
drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
}
if (fUseIndexedDraw) {
fTarget->drawIndexed(fPrimitiveType, 0, 0,
fVertexCnt, fIndexCnt);
} else {
int baseVertex = 0;
for (int sp = 0; sp < fSubpathCount; ++sp) {
fTarget->drawNonIndexed(fPrimitiveType, baseVertex,
fSubpathVertCount[sp]);
baseVertex += fSubpathVertCount[sp];
}
}
}
}
}
}