当前位置: 首页>>代码示例>>C++>>正文


C++ GaussianFactorGraph::optimize方法代码示例

本文整理汇总了C++中GaussianFactorGraph::optimize方法的典型用法代码示例。如果您正苦于以下问题:C++ GaussianFactorGraph::optimize方法的具体用法?C++ GaussianFactorGraph::optimize怎么用?C++ GaussianFactorGraph::optimize使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GaussianFactorGraph的用法示例。


在下文中一共展示了GaussianFactorGraph::optimize方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: timePlanarSmoother

// Create a planar factor graph and optimize
double timePlanarSmoother(int N, bool old = true) {
  GaussianFactorGraph fg = planarGraph(N).get<0>();
  clock_t start = clock();
  fg.optimize();
  clock_t end = clock ();
  double dif = (double)(end - start) / CLOCKS_PER_SEC;
  return dif;
}
开发者ID:DForger,项目名称:gtsam,代码行数:9,代码来源:timeGaussianFactorGraph.cpp

示例2: timeKalmanSmoother

// Create a Kalman smoother for t=1:T and optimize
double timeKalmanSmoother(int T) {
  GaussianFactorGraph smoother = createSmoother(T);
  clock_t start = clock();
  // Keys will come out sorted since keys() returns a set
  smoother.optimize(Ordering(smoother.keys()));
  clock_t end = clock ();
  double dif = (double)(end - start) / CLOCKS_PER_SEC;
  return dif;
}
开发者ID:DForger,项目名称:gtsam,代码行数:10,代码来源:timeGaussianFactorGraph.cpp

示例3: check_smoother

/* ************************************************************************* */
bool check_smoother(const NonlinearFactorGraph& fullgraph, const Values& fullinit, const IncrementalFixedLagSmoother& smoother, const Key& key) {

  GaussianFactorGraph linearized = *fullgraph.linearize(fullinit);
  VectorValues delta = linearized.optimize();
  Values fullfinal = fullinit.retract(delta);

  Point2 expected = fullfinal.at<Point2>(key);
  Point2 actual = smoother.calculateEstimate<Point2>(key);

  return assert_equal(expected, actual);
}
开发者ID:haidai,项目名称:gtsam,代码行数:12,代码来源:testIncrementalFixedLagSmoother.cpp

示例4: CHECK

TEST(LPSolver, overConstrainedLinearSystem2) {
  GaussianFactorGraph graph;
  graph.push_back(JacobianFactor(1, I_1x1, 2, I_1x1, kOne,
                                 noiseModel::Constrained::All(1)));
  graph.push_back(JacobianFactor(1, I_1x1, 2, -I_1x1, 5 * kOne,
                                 noiseModel::Constrained::All(1)));
  graph.push_back(JacobianFactor(1, I_1x1, 2, 2 * I_1x1, 6 * kOne,
                                 noiseModel::Constrained::All(1)));
  VectorValues x = graph.optimize();
  // This check confirms that gtsam linear constraint solver can't handle
  // over-constrained system
  CHECK(graph.error(x) != 0.0);
}
开发者ID:haidai,项目名称:gtsam,代码行数:13,代码来源:testLPSolver.cpp

示例5: factor

/**
 * TEST gtsam solver with an over-constrained system
 *  x + y = 1
 *  x - y = 5
 *  x + 2y = 6
 */
TEST(LPSolver, overConstrainedLinearSystem) {
  GaussianFactorGraph graph;
  Matrix A1 = Vector3(1, 1, 1);
  Matrix A2 = Vector3(1, -1, 2);
  Vector b = Vector3(1, 5, 6);
  JacobianFactor factor(1, A1, 2, A2, b, noiseModel::Constrained::All(3));
  graph.push_back(factor);

  VectorValues x = graph.optimize();
  // This check confirms that gtsam linear constraint solver can't handle
  // over-constrained system
  CHECK(factor.error(x) != 0.0);
}
开发者ID:haidai,项目名称:gtsam,代码行数:19,代码来源:testLPSolver.cpp

示例6: createSimpleGaussianFactorGraph

/* ************************************************************************* */
TEST(GaussianFactorGraph, gradient) {
  GaussianFactorGraph fg = createSimpleGaussianFactorGraph();

  // Construct expected gradient
  // 2*f(x) = 100*(x1+c[X(1)])^2 + 100*(x2-x1-[0.2;-0.1])^2 + 25*(l1-x1-[0.0;0.2])^2 +
  // 25*(l1-x2-[-0.2;0.3])^2
  // worked out: df/dx1 = 100*[0.1;0.1] + 100*[0.2;-0.1]) + 25*[0.0;0.2] = [10+20;10-10+5] = [30;5]
  VectorValues expected = map_list_of<Key, Vector>(1, Vector2(5.0, -12.5))(2, Vector2(30.0, 5.0))(
      0, Vector2(-25.0, 17.5));

  // Check the gradient at delta=0
  VectorValues zero = VectorValues::Zero(expected);
  VectorValues actual = fg.gradient(zero);
  EXPECT(assert_equal(expected, actual));
  EXPECT(assert_equal(expected, fg.gradientAtZero()));

  // Check the gradient at the solution (should be zero)
  VectorValues solution = fg.optimize();
  VectorValues actual2 = fg.gradient(solution);
  EXPECT(assert_equal(VectorValues::Zero(solution), actual2));
}
开发者ID:haidai,项目名称:gtsam,代码行数:22,代码来源:testGaussianFactorGraph.cpp


注:本文中的GaussianFactorGraph::optimize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。