本文整理汇总了C++中GaussianFactorGraph::augmentedJacobian方法的典型用法代码示例。如果您正苦于以下问题:C++ GaussianFactorGraph::augmentedJacobian方法的具体用法?C++ GaussianFactorGraph::augmentedJacobian怎么用?C++ GaussianFactorGraph::augmentedJacobian使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GaussianFactorGraph
的用法示例。
在下文中一共展示了GaussianFactorGraph::augmentedJacobian方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Ab
/* ************************************************************************* */
TEST(GaussianFactorGraph, matrices) {
// Create factor graph:
// x1 x2 x3 x4 x5 b
// 1 2 3 0 0 4
// 5 6 7 0 0 8
// 9 10 0 11 12 13
// 0 0 0 14 15 16
Matrix A00 = (Matrix(2, 3) << 1, 2, 3, 5, 6, 7).finished();
Matrix A10 = (Matrix(2, 3) << 9, 10, 0, 0, 0, 0).finished();
Matrix A11 = (Matrix(2, 2) << 11, 12, 14, 15).finished();
GaussianFactorGraph gfg;
SharedDiagonal model = noiseModel::Unit::Create(2);
gfg.add(0, A00, Vector2(4., 8.), model);
gfg.add(0, A10, 1, A11, Vector2(13., 16.), model);
Matrix Ab(4, 6);
Ab << 1, 2, 3, 0, 0, 4, 5, 6, 7, 0, 0, 8, 9, 10, 0, 11, 12, 13, 0, 0, 0, 14, 15, 16;
// augmented versions
EXPECT(assert_equal(Ab, gfg.augmentedJacobian()));
EXPECT(assert_equal(Ab.transpose() * Ab, gfg.augmentedHessian()));
// jacobian
Matrix A = Ab.leftCols(Ab.cols() - 1);
Vector b = Ab.col(Ab.cols() - 1);
Matrix actualA;
Vector actualb;
boost::tie(actualA, actualb) = gfg.jacobian();
EXPECT(assert_equal(A, actualA));
EXPECT(assert_equal(b, actualb));
// hessian
Matrix L = A.transpose() * A;
Vector eta = A.transpose() * b;
Matrix actualL;
Vector actualeta;
boost::tie(actualL, actualeta) = gfg.hessian();
EXPECT(assert_equal(L, actualL));
EXPECT(assert_equal(eta, actualeta));
// hessianBlockDiagonal
VectorValues expectLdiagonal; // Make explicit that diagonal is sum-squares of columns
expectLdiagonal.insert(0, Vector3(1 + 25 + 81, 4 + 36 + 100, 9 + 49));
expectLdiagonal.insert(1, Vector2(121 + 196, 144 + 225));
EXPECT(assert_equal(expectLdiagonal, gfg.hessianDiagonal()));
// hessianBlockDiagonal
map<Key, Matrix> actualBD = gfg.hessianBlockDiagonal();
LONGS_EQUAL(2, actualBD.size());
EXPECT(assert_equal(A00.transpose() * A00 + A10.transpose() * A10, actualBD[0]));
EXPECT(assert_equal(A11.transpose() * A11, actualBD[1]));
}
示例2: ordering
/* ************************************************************************* */
TEST(GaussianBayesTree, shortcut_overlapping_separator)
{
// Test computing shortcuts when the separator overlaps. This previously
// would have highlighted a problem where information was duplicated.
// Create factor graph:
// f(1,2,5)
// f(3,4,5)
// f(5,6)
// f(6,7)
GaussianFactorGraph fg;
noiseModel::Diagonal::shared_ptr model = noiseModel::Unit::Create(1);
fg.add(1, (Matrix(1, 1) << 1.0).finished(), 3, (Matrix(1, 1) << 2.0).finished(), 5, (Matrix(1, 1) << 3.0).finished(), (Vector(1) << 4.0).finished(), model);
fg.add(1, (Matrix(1, 1) << 5.0).finished(), (Vector(1) << 6.0).finished(), model);
fg.add(2, (Matrix(1, 1) << 7.0).finished(), 4, (Matrix(1, 1) << 8.0).finished(), 5, (Matrix(1, 1) << 9.0).finished(), (Vector(1) << 10.0).finished(), model);
fg.add(2, (Matrix(1, 1) << 11.0).finished(), (Vector(1) << 12.0).finished(), model);
fg.add(5, (Matrix(1, 1) << 13.0).finished(), 6, (Matrix(1, 1) << 14.0).finished(), (Vector(1) << 15.0).finished(), model);
fg.add(6, (Matrix(1, 1) << 17.0).finished(), 7, (Matrix(1, 1) << 18.0).finished(), (Vector(1) << 19.0).finished(), model);
fg.add(7, (Matrix(1, 1) << 20.0).finished(), (Vector(1) << 21.0).finished(), model);
// Eliminate into BayesTree
// c(6,7)
// c(5|6)
// c(1,2|5)
// c(3,4|5)
Ordering ordering(fg.keys());
GaussianBayesTree bt = *fg.eliminateMultifrontal(ordering); // eliminate in increasing key order, fg.keys() is sorted.
GaussianFactorGraph joint = *bt.joint(1,2, EliminateQR);
Matrix expectedJointJ = (Matrix(2,3) <<
5, 0, 6,
0, -11, -12
).finished();
Matrix actualJointJ = joint.augmentedJacobian();
EXPECT(assert_equal(expectedJointJ, actualJointJ));
}