本文整理汇总了C++中FBodyInstance::SetAngularVelocity方法的典型用法代码示例。如果您正苦于以下问题:C++ FBodyInstance::SetAngularVelocity方法的具体用法?C++ FBodyInstance::SetAngularVelocity怎么用?C++ FBodyInstance::SetAngularVelocity使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类FBodyInstance
的用法示例。
在下文中一共展示了FBodyInstance::SetAngularVelocity方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: TickComponent
void UBuoyancyForceComponent::TickComponent(float DeltaTime, enum ELevelTick TickType, FActorComponentTickFunction *ThisTickFunction)
{
Super::TickComponent(DeltaTime, TickType, ThisTickFunction);
// If disabled or we are not attached to a parent component, return.
if (!bIsActive || !GetAttachParent()) return;
if (!OceanManager) return;
UPrimitiveComponent* BasePrimComp = Cast<UPrimitiveComponent>(GetAttachParent());
if (!BasePrimComp) return;
if (!BasePrimComp->IsSimulatingPhysics())
{
if (!SnapToSurfaceIfNoPhysics) return;
UE_LOG(LogTemp, Warning, TEXT("Running in no physics mode.."));
float waveHeight = OceanManager->GetWaveHeightValue(BasePrimComp->GetComponentLocation(), World, true, TwoGerstnerIterations).Z;
BasePrimComp->SetWorldLocation(FVector(BasePrimComp->GetComponentLocation().X, BasePrimComp->GetComponentLocation().Y, waveHeight));
return;
}
//Get gravity
float Gravity = BasePrimComp->GetPhysicsVolume()->GetGravityZ();
//--------------- If Skeletal ---------------
USkeletalMeshComponent* SkeletalComp = Cast<USkeletalMeshComponent>(GetAttachParent());
if (SkeletalComp && ApplyForceToBones)
{
TArray<FName> BoneNames;
SkeletalComp->GetBoneNames(BoneNames);
for (int32 Itr = 0; Itr < BoneNames.Num(); Itr++)
{
FBodyInstance* BI = SkeletalComp->GetBodyInstance(BoneNames[Itr], false);
if (BI && BI->IsValidBodyInstance()
&& BI->bEnableGravity) //Buoyancy doesn't exist without gravity
{
bool isUnderwater = false;
//FVector worldBoneLoc = SkeletalComp->GetBoneLocation(BoneNames[Itr]);
FVector worldBoneLoc = BI->GetCOMPosition(); //Use center of mass of the bone's physics body instead of bone's location
FVector waveHeight = OceanManager->GetWaveHeightValue(worldBoneLoc, World, true, TwoGerstnerIterations);
float BoneDensity = MeshDensity;
float BoneTestRadius = FMath::Abs(TestPointRadius);
float SignedBoneRadius = FMath::Sign(Gravity) * TestPointRadius; //Direction of radius (test radius is actually a Z offset, should probably rename it!). Just in case we need an upside down world.
//Get density & radius from the override array, if available.
for (int pointIndex = 0; pointIndex < BoneOverride.Num(); pointIndex++)
{
FStructBoneOverride Override = BoneOverride[pointIndex];
if (Override.BoneName.IsEqual(BoneNames[Itr]))
{
BoneDensity = Override.Density;
BoneTestRadius = FMath::Abs(Override.TestRadius);
SignedBoneRadius = FMath::Sign(Gravity) * BoneTestRadius;
}
}
//If test point radius is below water surface, add buoyancy force.
if (waveHeight.Z > (worldBoneLoc.Z + SignedBoneRadius))
{
isUnderwater = true;
float DepthMultiplier = (waveHeight.Z - (worldBoneLoc.Z + SignedBoneRadius)) / (BoneTestRadius * 2);
DepthMultiplier = FMath::Clamp(DepthMultiplier, 0.f, 1.f);
float Mass = SkeletalComp->CalculateMass(BoneNames[Itr]); //Mass of this specific bone's physics body
/**
* --------
* Buoyancy force formula: (Volume(Mass / Density) * Fluid Density * -Gravity) / Total Points * Depth Multiplier
* --------
*/
float BuoyancyForceZ = Mass / BoneDensity * FluidDensity * -Gravity * DepthMultiplier;
//Velocity damping.
FVector DampingForce = -BI->GetUnrealWorldVelocity() * VelocityDamper * Mass * DepthMultiplier;
//Experimental xy wave force
if (EnableWaveForces)
{
float waveVelocity = FMath::Clamp(BI->GetUnrealWorldVelocity().Z, -20.f, 150.f) * (1 - DepthMultiplier);
DampingForce += FVector(OceanManager->GlobalWaveDirection.X, OceanManager->GlobalWaveDirection.Y, 0) * Mass * waveVelocity * WaveForceMultiplier;
}
//Add force to this bone
BI->AddForce(FVector(DampingForce.X, DampingForce.Y, DampingForce.Z + BuoyancyForceZ));
//BasePrimComp->AddForceAtLocation(FVector(DampingForce.X, DampingForce.Y, DampingForce.Z + BuoyancyForceZ), worldBoneLoc, BoneNames[Itr]);
}
//Apply fluid damping & clamp velocity
if (isUnderwater)
{
BI->SetLinearVelocity(-BI->GetUnrealWorldVelocity() * (FluidLinearDamping / 10), true);
BI->SetAngularVelocity(-BI->GetUnrealWorldAngularVelocity() * (FluidAngularDamping / 10), true);
//Clamp the velocity to MaxUnderwaterVelocity
//.........这里部分代码省略.........
示例2: ApplyRigidBodyState
bool UPrimitiveComponent::ApplyRigidBodyState(const FRigidBodyState& NewState, const FRigidBodyErrorCorrection& ErrorCorrection, FVector& OutDeltaPos, FName BoneName)
{
bool bRestoredState = true;
FBodyInstance* BI = GetBodyInstance(BoneName);
if (BI && BI->IsInstanceSimulatingPhysics())
{
// failure cases
const float QuatSizeSqr = NewState.Quaternion.SizeSquared();
if (QuatSizeSqr < KINDA_SMALL_NUMBER)
{
UE_LOG(LogPhysics, Warning, TEXT("Invalid zero quaternion set for body. (%s:%s)"), *GetName(), *BoneName.ToString());
return bRestoredState;
}
else if (FMath::Abs(QuatSizeSqr - 1.f) > KINDA_SMALL_NUMBER)
{
UE_LOG(LogPhysics, Warning, TEXT("Quaternion (%f %f %f %f) with non-unit magnitude detected. (%s:%s)"),
NewState.Quaternion.X, NewState.Quaternion.Y, NewState.Quaternion.Z, NewState.Quaternion.W, *GetName(), *BoneName.ToString() );
return bRestoredState;
}
FRigidBodyState CurrentState;
GetRigidBodyState(CurrentState, BoneName);
const bool bShouldSleep = (NewState.Flags & ERigidBodyFlags::Sleeping) != 0;
/////// POSITION CORRECTION ///////
// Find out how much of a correction we are making
const FVector DeltaPos = NewState.Position - CurrentState.Position;
const float DeltaMagSq = DeltaPos.SizeSquared();
const float BodyLinearSpeedSq = CurrentState.LinVel.SizeSquared();
// Snap position by default (big correction, or we are moving too slowly)
FVector UpdatedPos = NewState.Position;
FVector FixLinVel = FVector::ZeroVector;
// If its a small correction and velocity is above threshold, only make a partial correction,
// and calculate a velocity that would fix it over 'fixTime'.
if (DeltaMagSq < ErrorCorrection.LinearDeltaThresholdSq &&
BodyLinearSpeedSq >= ErrorCorrection.BodySpeedThresholdSq)
{
UpdatedPos = FMath::Lerp(CurrentState.Position, NewState.Position, ErrorCorrection.LinearInterpAlpha);
FixLinVel = (NewState.Position - UpdatedPos) * ErrorCorrection.LinearRecipFixTime;
}
// Get the linear correction
OutDeltaPos = UpdatedPos - CurrentState.Position;
/////// ORIENTATION CORRECTION ///////
// Get quaternion that takes us from old to new
const FQuat InvCurrentQuat = CurrentState.Quaternion.Inverse();
const FQuat DeltaQuat = NewState.Quaternion * InvCurrentQuat;
FVector DeltaAxis;
float DeltaAng; // radians
DeltaQuat.ToAxisAndAngle(DeltaAxis, DeltaAng);
DeltaAng = FMath::UnwindRadians(DeltaAng);
// Snap rotation by default (big correction, or we are moving too slowly)
FQuat UpdatedQuat = NewState.Quaternion;
FVector FixAngVel = FVector::ZeroVector; // degrees per second
// If the error is small, and we are moving, try to move smoothly to it
if (FMath::Abs(DeltaAng) < ErrorCorrection.AngularDeltaThreshold )
{
UpdatedQuat = FMath::Lerp(CurrentState.Quaternion, NewState.Quaternion, ErrorCorrection.AngularInterpAlpha);
FixAngVel = DeltaAxis.GetSafeNormal() * FMath::RadiansToDegrees(DeltaAng) * (1.f - ErrorCorrection.AngularInterpAlpha) * ErrorCorrection.AngularRecipFixTime;
}
/////// BODY UPDATE ///////
BI->SetBodyTransform(FTransform(UpdatedQuat, UpdatedPos), true);
BI->SetLinearVelocity(NewState.LinVel + FixLinVel, false);
BI->SetAngularVelocity(NewState.AngVel + FixAngVel, false);
// state is restored when no velocity corrections are required
bRestoredState = (FixLinVel.SizeSquared() < KINDA_SMALL_NUMBER) && (FixAngVel.SizeSquared() < KINDA_SMALL_NUMBER);
/////// SLEEP UPDATE ///////
const bool bIsAwake = BI->IsInstanceAwake();
if (bIsAwake && (bShouldSleep && bRestoredState))
{
BI->PutInstanceToSleep();
}
else if (!bIsAwake)
{
BI->WakeInstance();
}
}
return bRestoredState;
}