本文整理汇总了C++中AssemblyContext::interior_value方法的典型用法代码示例。如果您正苦于以下问题:C++ AssemblyContext::interior_value方法的具体用法?C++ AssemblyContext::interior_value怎么用?C++ AssemblyContext::interior_value使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类AssemblyContext
的用法示例。
在下文中一共展示了AssemblyContext::interior_value方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: U
void LowMachNavierStokesSPGSMStabilization<Mu,SH,TC>::assemble_energy_time_deriv( bool /*compute_jacobian*/,
AssemblyContext& context )
{
// The number of local degrees of freedom in each variable.
const unsigned int n_T_dofs = context.get_dof_indices(this->_temp_vars.T()).size();
// Element Jacobian * quadrature weights for interior integration.
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(this->_temp_vars.T())->get_JxW();
// The temperature shape functions gradients at interior quadrature points.
const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
context.get_element_fe(this->_temp_vars.T())->get_dphi();
libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(this->_temp_vars.T()); // R_{T}
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
libMesh::Number u, v;
u = context.interior_value(this->_flow_vars.u(), qp);
v = context.interior_value(this->_flow_vars.v(), qp);
libMesh::Gradient grad_T = context.interior_gradient(this->_temp_vars.T(), qp);
libMesh::NumberVectorValue U(u,v);
if (this->mesh_dim(context) == 3)
U(2) = context.interior_value(this->_flow_vars.w(), qp); // w
libMesh::Real T = context.interior_value( this->_temp_vars.T(), qp );
libMesh::Real rho = this->rho( T, this->get_p0_steady( context, qp ) );
libMesh::Real k = this->_k(T);
libMesh::Real cp = this->_cp(T);
libMesh::Number rho_cp = rho*this->_cp(T);
libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u());
libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );
libMesh::Real tau_E = this->_stab_helper.compute_tau_energy( context, qp, g, G, rho, U, k, cp, this->_is_steady );
libMesh::Real RE_s = this->compute_res_energy_steady( context, qp );
for (unsigned int i=0; i != n_T_dofs; i++)
{
FT(i) -= rho_cp*tau_E*RE_s*U*T_gradphi[i][qp]*JxW[qp];
}
}
return;
}
示例2: gas_evaluator
void ReactingLowMachNavierStokesStabilizationBase<Mixture,Evaluator>::compute_res_transient( AssemblyContext& context,
unsigned int qp,
libMesh::Real& RP_t,
libMesh::RealGradient& RM_t,
libMesh::Real& RE_t,
std::vector<libMesh::Real>& Rs_t )
{
libMesh::Real T = context.interior_value( this->_temp_vars.T(), qp );
std::vector<libMesh::Real> ws(this->n_species());
for(unsigned int s=0; s < this->_n_species; s++ )
{
ws[s] = context.interior_value(this->_species_vars.species(s), qp);
}
Evaluator gas_evaluator( this->_gas_mixture );
const libMesh::Real R_mix = gas_evaluator.R_mix(ws);
const libMesh::Real p0 = this->get_p0_transient(context,qp);
const libMesh::Real rho = this->rho(T, p0, R_mix);
const libMesh::Real cp = gas_evaluator.cp(T,p0,ws);
const libMesh::Real M = gas_evaluator.M_mix( ws );
// M_dot = -M^2 \sum_s w_dot[s]/Ms
libMesh::Real M_dot = 0.0;
std::vector<libMesh::Real> ws_dot(this->n_species());
for(unsigned int s=0; s < this->n_species(); s++)
{
context.interior_rate(this->_species_vars.species(s), qp, ws_dot[s]);
// Start accumulating M_dot
M_dot += ws_dot[s]/this->_gas_mixture.M(s);
}
libMesh::Real M_dot_over_M = M_dot*(-M);
libMesh::RealGradient u_dot;
context.interior_rate(this->_flow_vars.u(), qp, u_dot(0));
context.interior_rate(this->_flow_vars.v(), qp, u_dot(1));
if(this->mesh_dim(context) == 3)
context.interior_rate(this->_flow_vars.w(), qp, u_dot(2));
libMesh::Real T_dot;
context.interior_rate(this->_temp_vars.T(), qp, T_dot);
RP_t = -T_dot/T + M_dot_over_M;
RM_t = rho*u_dot;
RE_t = rho*cp*T_dot;
for(unsigned int s=0; s < this->n_species(); s++)
{
Rs_t[s] = rho*ws_dot[s];
}
return;
}
示例3: U
void HeatTransferSPGSMStabilization<K>::element_time_derivative
( bool compute_jacobian, AssemblyContext & context )
{
// The number of local degrees of freedom in each variable.
const unsigned int n_T_dofs = context.get_dof_indices(this->_temp_vars.T()).size();
// Element Jacobian * quadrature weights for interior integration.
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(this->_temp_vars.T())->get_JxW();
const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
context.get_element_fe(this->_temp_vars.T())->get_dphi();
libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(this->_temp_vars.T()); // R_{T}
libMesh::FEBase* fe = context.get_element_fe(this->_temp_vars.T());
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );
libMesh::RealGradient U( context.interior_value( this->_flow_vars.u(), qp ),
context.interior_value( this->_flow_vars.v(), qp ) );
if( this->_flow_vars.dim() == 3 )
{
U(2) = context.interior_value( this->_flow_vars.w(), qp );
}
// Compute Conductivity at this qp
libMesh::Real _k_qp = this->_k(context, qp);
libMesh::Real tau_E = this->_stab_helper.compute_tau_energy( context, G, this->_rho, this->_Cp, _k_qp, U, this->_is_steady );
libMesh::Real RE_s = this->_stab_helper.compute_res_energy_steady( context, qp, this->_rho, this->_Cp, _k_qp );
for (unsigned int i=0; i != n_T_dofs; i++)
{
FT(i) += -tau_E*RE_s*this->_rho*this->_Cp*U*T_gradphi[i][qp]*JxW[qp];
}
if( compute_jacobian )
{
libmesh_not_implemented();
}
}
}
示例4:
void LowMachNavierStokes<Mu,SH,TC>::assemble_thermo_press_mass_residual( bool /*compute_jacobian*/,
AssemblyContext& context )
{
// The number of local degrees of freedom in each variable.
const unsigned int n_p0_dofs = context.get_dof_indices(this->_p0_var).size();
const unsigned int n_T_dofs = context.get_dof_indices(this->_T_var).size();
const unsigned int n_p_dofs = context.get_dof_indices(this->_p_var).size();
// Element Jacobian * quadrature weights for interior integration
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(this->_T_var)->get_JxW();
// The temperature shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& T_phi =
context.get_element_fe(this->_T_var)->get_phi();
// The temperature shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& p_phi =
context.get_element_fe(this->_p_var)->get_phi();
// The subvectors and submatrices we need to fill:
libMesh::DenseSubVector<libMesh::Real> &F_p0 = context.get_elem_residual(this->_p0_var);
libMesh::DenseSubVector<libMesh::Real> &F_T = context.get_elem_residual(this->_T_var);
libMesh::DenseSubVector<libMesh::Real> &F_p = context.get_elem_residual(this->_p_var);
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp = 0; qp != n_qpoints; ++qp)
{
libMesh::Number T;
T = context.fixed_interior_value(this->_T_var, qp);
libMesh::Number cp = this->_cp(T);
libMesh::Number cv = cp + this->_R;
libMesh::Number gamma = cp/cv;
libMesh::Number one_over_gamma = 1.0/(gamma-1.0);
libMesh::Number p0_dot = context.interior_value(this->_p0_var, qp );
libMesh::Number p0 = context.fixed_interior_value(this->_p0_var, qp );
for (unsigned int i=0; i != n_p0_dofs; i++)
{
F_p0(i) += p0_dot*one_over_gamma*JxW[qp];
}
for (unsigned int i=0; i != n_T_dofs; i++)
{
F_T(i) -= p0_dot*T_phi[i][qp]*JxW[qp];
}
for (unsigned int i=0; i != n_p_dofs; i++)
{
F_p(i) -= p0_dot/p0*p_phi[i][qp]*JxW[qp];
}
}
return;
}
示例5: compute_res_energy_transient
libMesh::Real HeatTransferStabilizationHelper::compute_res_energy_transient( AssemblyContext& context,
unsigned int qp,
const libMesh::Real rho,
const libMesh::Real Cp ) const
{
libMesh::Real T_dot = context.interior_value(this->_temp_vars.T_var(), qp);
return rho*Cp*T_dot;
}
示例6:
void HeatTransferStabilizationHelper::compute_res_energy_transient_and_derivs
( AssemblyContext& context,
unsigned int qp,
const libMesh::Real rho,
const libMesh::Real Cp,
libMesh::Real &res,
libMesh::Real &d_res_dTdot
) const
{
libMesh::Real T_dot = context.interior_value(this->_temp_vars.T_var(), qp);
res = rho*Cp*T_dot;
d_res_dTdot = rho*Cp;
}
示例7: compute_res_spalart_transient
libMesh::Real SpalartAllmarasStabilizationHelper::compute_res_spalart_transient( AssemblyContext& context, unsigned int qp, const libMesh::Real rho ) const
{
libMesh::Number nu_dot = context.interior_value(this->_turbulence_vars.nu_var(), qp);
return rho*nu_dot;
}
示例8: element_time_derivative
void HeatTransfer::element_time_derivative( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /*cache*/ )
{
#ifdef GRINS_USE_GRVY_TIMERS
this->_timer->BeginTimer("HeatTransfer::element_time_derivative");
#endif
// The number of local degrees of freedom in each variable.
const unsigned int n_T_dofs = context.get_dof_indices(_temp_vars.T_var()).size();
const unsigned int n_u_dofs = context.get_dof_indices(_flow_vars.u_var()).size();
//TODO: check n_T_dofs is same as n_u_dofs, n_v_dofs, n_w_dofs
// We get some references to cell-specific data that
// will be used to assemble the linear system.
// Element Jacobian * quadrature weights for interior integration.
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(_temp_vars.T_var())->get_JxW();
// The temperature shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& T_phi =
context.get_element_fe(_temp_vars.T_var())->get_phi();
// The velocity shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& vel_phi =
context.get_element_fe(_flow_vars.u_var())->get_phi();
// The temperature shape function gradients (in global coords.)
// at interior quadrature points.
const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
context.get_element_fe(_temp_vars.T_var())->get_dphi();
const std::vector<libMesh::Point>& u_qpoint =
context.get_element_fe(this->_flow_vars.u_var())->get_xyz();
libMesh::DenseSubMatrix<libMesh::Number> &KTT = context.get_elem_jacobian(_temp_vars.T_var(), _temp_vars.T_var()); // R_{T},{T}
libMesh::DenseSubMatrix<libMesh::Number> &KTu = context.get_elem_jacobian(_temp_vars.T_var(), _flow_vars.u_var()); // R_{T},{u}
libMesh::DenseSubMatrix<libMesh::Number> &KTv = context.get_elem_jacobian(_temp_vars.T_var(), _flow_vars.v_var()); // R_{T},{v}
libMesh::DenseSubMatrix<libMesh::Number>* KTw = NULL;
libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(_temp_vars.T_var()); // R_{T}
if( this->_dim == 3 )
{
KTw = &context.get_elem_jacobian(_temp_vars.T_var(), _flow_vars.w_var()); // R_{T},{w}
}
// Now we will build the element Jacobian and residual.
// Constructing the residual requires the solution and its
// gradient from the previous timestep. This must be
// calculated at each quadrature point by summing the
// solution degree-of-freedom values by the appropriate
// weight functions.
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
// Compute the solution & its gradient at the old Newton iterate.
libMesh::Number u, v;
u = context.interior_value(_flow_vars.u_var(), qp);
v = context.interior_value(_flow_vars.v_var(), qp);
libMesh::Gradient grad_T;
grad_T = context.interior_gradient(_temp_vars.T_var(), qp);
libMesh::NumberVectorValue U (u,v);
if (_dim == 3)
U(2) = context.interior_value(_flow_vars.w_var(), qp);
const libMesh::Number r = u_qpoint[qp](0);
libMesh::Real jac = JxW[qp];
if( _is_axisymmetric )
{
jac *= r;
}
// First, an i-loop over the degrees of freedom.
for (unsigned int i=0; i != n_T_dofs; i++)
{
FT(i) += jac *
(-_rho*_Cp*T_phi[i][qp]*(U*grad_T) // convection term
-_k*(T_gradphi[i][qp]*grad_T) ); // diffusion term
if (compute_jacobian)
{
for (unsigned int j=0; j != n_T_dofs; j++)
{
// TODO: precompute some terms like:
// _rho*_Cp*T_phi[i][qp]*(vel_phi[j][qp]*T_grad_phi[j][qp])
KTT(i,j) += jac *
(-_rho*_Cp*T_phi[i][qp]*(U*T_gradphi[j][qp]) // convection term
-_k*(T_gradphi[i][qp]*T_gradphi[j][qp])); // diffusion term
} // end of the inner dof (j) loop
//.........这里部分代码省略.........
示例9: U
void AveragedTurbine<Mu>::element_time_derivative( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /* cache */ )
{
#ifdef GRINS_USE_GRVY_TIMERS
this->_timer->BeginTimer("AveragedTurbine::element_time_derivative");
#endif
// Element Jacobian * quadrature weights for interior integration
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(this->_flow_vars.u())->get_JxW();
// The shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& u_phi =
context.get_element_fe(this->_flow_vars.u())->get_phi();
const std::vector<libMesh::Point>& u_qpoint =
context.get_element_fe(this->_flow_vars.u())->get_xyz();
// The number of local degrees of freedom in each variable
const unsigned int n_u_dofs = context.get_dof_indices(this->_flow_vars.u()).size();
// The subvectors and submatrices we need to fill:
libMesh::DenseSubMatrix<libMesh::Number> &Kuu = context.get_elem_jacobian(this->_flow_vars.u(), this->_flow_vars.u()); // R_{u},{u}
libMesh::DenseSubMatrix<libMesh::Number> &Kuv = context.get_elem_jacobian(this->_flow_vars.u(), this->_flow_vars.v()); // R_{u},{v}
libMesh::DenseSubMatrix<libMesh::Number> &Kvu = context.get_elem_jacobian(this->_flow_vars.v(), this->_flow_vars.u()); // R_{v},{u}
libMesh::DenseSubMatrix<libMesh::Number> &Kvv = context.get_elem_jacobian(this->_flow_vars.v(), this->_flow_vars.v()); // R_{v},{v}
libMesh::DenseSubMatrix<libMesh::Number> &Kus =
context.get_elem_jacobian(this->_flow_vars.u(),
this->fan_speed_var()); // R_{u},{s}
libMesh::DenseSubMatrix<libMesh::Number> &Ksu =
context.get_elem_jacobian(this->fan_speed_var(),
this->_flow_vars.u()); // R_{s},{u}
libMesh::DenseSubMatrix<libMesh::Number> &Kvs =
context.get_elem_jacobian(this->_flow_vars.v(),
this->fan_speed_var()); // R_{v},{s}
libMesh::DenseSubMatrix<libMesh::Number> &Ksv =
context.get_elem_jacobian(this->fan_speed_var(),
this->_flow_vars.v()); // R_{s},{v}
libMesh::DenseSubMatrix<libMesh::Number> &Kss =
context.get_elem_jacobian(this->fan_speed_var(),
this->fan_speed_var()); // R_{s},{s}
libMesh::DenseSubMatrix<libMesh::Number>* Kwu = NULL;
libMesh::DenseSubMatrix<libMesh::Number>* Kwv = NULL;
libMesh::DenseSubMatrix<libMesh::Number>* Kww = NULL;
libMesh::DenseSubMatrix<libMesh::Number>* Kuw = NULL;
libMesh::DenseSubMatrix<libMesh::Number>* Kvw = NULL;
libMesh::DenseSubMatrix<libMesh::Number>* Ksw = NULL;
libMesh::DenseSubMatrix<libMesh::Number>* Kws = NULL;
libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(this->_flow_vars.u()); // R_{u}
libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(this->_flow_vars.v()); // R_{v}
libMesh::DenseSubVector<libMesh::Number>* Fw = NULL;
libMesh::DenseSubVector<libMesh::Number> &Fs = context.get_elem_residual(this->fan_speed_var()); // R_{s}
if( this->mesh_dim(context) == 3 )
{
Kuw = &context.get_elem_jacobian(this->_flow_vars.u(), this->_flow_vars.w()); // R_{u},{w}
Kvw = &context.get_elem_jacobian(this->_flow_vars.v(), this->_flow_vars.w()); // R_{v},{w}
Kwu = &context.get_elem_jacobian(this->_flow_vars.w(), this->_flow_vars.u()); // R_{w},{u}
Kwv = &context.get_elem_jacobian(this->_flow_vars.w(), this->_flow_vars.v()); // R_{w},{v}
Kww = &context.get_elem_jacobian(this->_flow_vars.w(), this->_flow_vars.w()); // R_{w},{w}
Fw = &context.get_elem_residual(this->_flow_vars.w()); // R_{w}
Ksw = &context.get_elem_jacobian(this->fan_speed_var(), this->_flow_vars.w()); // R_{s},{w}
Kws = &context.get_elem_jacobian(this->_flow_vars.w(), this->fan_speed_var()); // R_{w},{s}
Fw = &context.get_elem_residual(this->_flow_vars.w()); // R_{w}
}
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
// Compute the solution at the old Newton iterate.
libMesh::Number u, v, s;
u = context.interior_value(this->_flow_vars.u(), qp);
v = context.interior_value(this->_flow_vars.v(), qp);
s = context.interior_value(this->fan_speed_var(), qp);
libMesh::NumberVectorValue U(u,v);
if (this->mesh_dim(context) == 3)
U(2) = context.interior_value(this->_flow_vars.w(), qp); // w
libMesh::NumberVectorValue U_B_1;
libMesh::NumberVectorValue F;
libMesh::NumberTensorValue dFdU;
libMesh::NumberTensorValue* dFdU_ptr =
compute_jacobian ? &dFdU : NULL;
libMesh::NumberVectorValue dFds;
libMesh::NumberVectorValue* dFds_ptr =
compute_jacobian ? &dFds : NULL;
if (!this->compute_force(u_qpoint[qp], context.time, U, s,
U_B_1, F, dFdU_ptr, dFds_ptr))
continue;
//.........这里部分代码省略.........
示例10: U
void VelocityPenalty<Mu>::element_time_derivative( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /* cache */ )
{
#ifdef GRINS_USE_GRVY_TIMERS
this->_timer->BeginTimer("VelocityPenalty::element_time_derivative");
#endif
// Element Jacobian * quadrature weights for interior integration
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(this->_flow_vars.u_var())->get_JxW();
// The shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& u_phi =
context.get_element_fe(this->_flow_vars.u_var())->get_phi();
const std::vector<libMesh::Point>& u_qpoint =
context.get_element_fe(this->_flow_vars.u_var())->get_xyz();
// The number of local degrees of freedom in each variable
const unsigned int n_u_dofs = context.get_dof_indices(this->_flow_vars.u_var()).size();
// The subvectors and submatrices we need to fill:
libMesh::DenseSubMatrix<libMesh::Number> &Kuu = context.get_elem_jacobian(this->_flow_vars.u_var(), this->_flow_vars.u_var()); // R_{u},{u}
libMesh::DenseSubMatrix<libMesh::Number> &Kuv = context.get_elem_jacobian(this->_flow_vars.u_var(), this->_flow_vars.v_var()); // R_{u},{v}
libMesh::DenseSubMatrix<libMesh::Number> &Kvu = context.get_elem_jacobian(this->_flow_vars.v_var(), this->_flow_vars.u_var()); // R_{v},{u}
libMesh::DenseSubMatrix<libMesh::Number> &Kvv = context.get_elem_jacobian(this->_flow_vars.v_var(), this->_flow_vars.v_var()); // R_{v},{v}
libMesh::DenseSubMatrix<libMesh::Number>* Kwu = NULL;
libMesh::DenseSubMatrix<libMesh::Number>* Kwv = NULL;
libMesh::DenseSubMatrix<libMesh::Number>* Kww = NULL;
libMesh::DenseSubMatrix<libMesh::Number>* Kuw = NULL;
libMesh::DenseSubMatrix<libMesh::Number>* Kvw = NULL;
libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(this->_flow_vars.u_var()); // R_{u}
libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(this->_flow_vars.v_var()); // R_{v}
libMesh::DenseSubVector<libMesh::Number>* Fw = NULL;
if( this->_dim == 3 )
{
Kuw = &context.get_elem_jacobian(this->_flow_vars.u_var(), this->_flow_vars.w_var()); // R_{u},{w}
Kvw = &context.get_elem_jacobian(this->_flow_vars.v_var(), this->_flow_vars.w_var()); // R_{v},{w}
Kwu = &context.get_elem_jacobian(this->_flow_vars.w_var(), this->_flow_vars.u_var()); // R_{w},{u}
Kwv = &context.get_elem_jacobian(this->_flow_vars.w_var(), this->_flow_vars.v_var()); // R_{w},{v}
Kww = &context.get_elem_jacobian(this->_flow_vars.w_var(), this->_flow_vars.w_var()); // R_{w},{w}
Fw = &context.get_elem_residual(this->_flow_vars.w_var()); // R_{w}
}
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
// Compute the solution at the old Newton iterate.
libMesh::Number u, v;
u = context.interior_value(this->_flow_vars.u_var(), qp);
v = context.interior_value(this->_flow_vars.v_var(), qp);
libMesh::NumberVectorValue U(u,v);
if (this->_dim == 3)
U(2) = context.interior_value(this->_flow_vars.w_var(), qp); // w
libMesh::NumberVectorValue F;
libMesh::NumberTensorValue dFdU;
libMesh::NumberTensorValue* dFdU_ptr =
compute_jacobian ? &dFdU : NULL;
if (!this->compute_force(u_qpoint[qp], context, U, F, dFdU_ptr))
continue;
const libMesh::Real jac = JxW[qp];
for (unsigned int i=0; i != n_u_dofs; i++)
{
const libMesh::Number jac_i = jac * u_phi[i][qp];
Fu(i) += F(0)*jac_i;
Fv(i) += F(1)*jac_i;
if( this->_dim == 3 )
{
(*Fw)(i) += F(2)*jac_i;
}
if( compute_jacobian )
{
for (unsigned int j=0; j != n_u_dofs; j++)
{
const libMesh::Number jac_ij = context.get_elem_solution_derivative() * jac_i * u_phi[j][qp];
Kuu(i,j) += jac_ij * dFdU(0,0);
Kuv(i,j) += jac_ij * dFdU(0,1);
Kvu(i,j) += jac_ij * dFdU(1,0);
Kvv(i,j) += jac_ij * dFdU(1,1);
if( this->_dim == 3 )
{
(*Kuw)(i,j) += jac_ij * dFdU(0,2);
(*Kvw)(i,j) += jac_ij * dFdU(1,2);
(*Kwu)(i,j) += jac_ij * dFdU(2,0);
(*Kwv)(i,j) += jac_ij * dFdU(2,1);
//.........这里部分代码省略.........
示例11: U
void BoussinesqBuoyancyAdjointStabilization<Mu>::element_time_derivative( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /*cache*/ )
{
#ifdef GRINS_USE_GRVY_TIMERS
this->_timer->BeginTimer("BoussinesqBuoyancyAdjointStabilization::element_time_derivative");
#endif
// The number of local degrees of freedom in each variable.
const unsigned int n_u_dofs = context.get_dof_indices(_flow_vars.u_var()).size();
const unsigned int n_T_dofs = context.get_dof_indices(_temp_vars.T_var()).size();
// Element Jacobian * quadrature weights for interior integration.
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(_flow_vars.u_var())->get_JxW();
const std::vector<std::vector<libMesh::Real> >& T_phi =
context.get_element_fe(this->_temp_vars.T_var())->get_phi();
const std::vector<std::vector<libMesh::Real> >& u_phi =
context.get_element_fe(this->_flow_vars.u_var())->get_phi();
const std::vector<std::vector<libMesh::RealGradient> >& u_gradphi =
context.get_element_fe(this->_flow_vars.u_var())->get_dphi();
const std::vector<std::vector<libMesh::RealTensor> >& u_hessphi =
context.get_element_fe(this->_flow_vars.u_var())->get_d2phi();
// Get residuals and jacobians
libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(_flow_vars.u_var()); // R_{u}
libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(_flow_vars.v_var()); // R_{v}
libMesh::DenseSubVector<libMesh::Number> *Fw = NULL;
libMesh::DenseSubMatrix<libMesh::Number> &KuT =
context.get_elem_jacobian(_flow_vars.u_var(), _temp_vars.T_var()); // J_{uT}
libMesh::DenseSubMatrix<libMesh::Number> &KvT =
context.get_elem_jacobian(_flow_vars.v_var(), _temp_vars.T_var()); // J_{vT}
libMesh::DenseSubMatrix<libMesh::Number> &Kuu =
context.get_elem_jacobian(_flow_vars.u_var(), _flow_vars.u_var()); // J_{uu}
libMesh::DenseSubMatrix<libMesh::Number> &Kuv =
context.get_elem_jacobian(_flow_vars.u_var(), _flow_vars.v_var()); // J_{uv}
libMesh::DenseSubMatrix<libMesh::Number> &Kvu =
context.get_elem_jacobian(_flow_vars.v_var(), _flow_vars.u_var()); // J_{vu}
libMesh::DenseSubMatrix<libMesh::Number> &Kvv =
context.get_elem_jacobian(_flow_vars.v_var(), _flow_vars.v_var()); // J_{vv}
libMesh::DenseSubMatrix<libMesh::Number> *KwT = NULL;
libMesh::DenseSubMatrix<libMesh::Number> *Kuw = NULL;
libMesh::DenseSubMatrix<libMesh::Number> *Kvw = NULL;
libMesh::DenseSubMatrix<libMesh::Number> *Kwu = NULL;
libMesh::DenseSubMatrix<libMesh::Number> *Kwv = NULL;
libMesh::DenseSubMatrix<libMesh::Number> *Kww = NULL;
if(this->_dim == 3)
{
Fw = &context.get_elem_residual(this->_flow_vars.w_var()); // R_{w}
KwT = &context.get_elem_jacobian
(_flow_vars.w_var(), _temp_vars.T_var()); // J_{wT}
Kuw = &context.get_elem_jacobian
(_flow_vars.u_var(), _flow_vars.w_var()); // J_{uw}
Kvw = &context.get_elem_jacobian
(_flow_vars.v_var(), _flow_vars.w_var()); // J_{vw}
Kwu = &context.get_elem_jacobian
(_flow_vars.w_var(), _flow_vars.u_var()); // J_{wu}
Kwv = &context.get_elem_jacobian
(_flow_vars.w_var(), _flow_vars.v_var()); // J_{wv}
Kww = &context.get_elem_jacobian
(_flow_vars.w_var(), _flow_vars.w_var()); // J_{ww}
}
// Now we will build the element Jacobian and residual.
// Constructing the residual requires the solution and its
// gradient from the previous timestep. This must be
// calculated at each quadrature point by summing the
// solution degree-of-freedom values by the appropriate
// weight functions.
unsigned int n_qpoints = context.get_element_qrule().n_points();
libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u_var());
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );
libMesh::RealGradient U( context.interior_value( this->_flow_vars.u_var(), qp ),
context.interior_value( this->_flow_vars.v_var(), qp ) );
if( this->_dim == 3 )
{
U(2) = context.interior_value( this->_flow_vars.w_var(), qp );
}
// Compute the viscosity at this qp
libMesh::Real mu_qp = this->_mu(context, qp);
libMesh::Real tau_M;
libMesh::Real d_tau_M_d_rho;
libMesh::Gradient d_tau_M_dU;
if (compute_jacobian)
//.........这里部分代码省略.........
示例12: element_time_derivative
void PracticeCDRinv::element_time_derivative( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /*cache*/ ){
// The number of local degrees of freedom in each variable.
const unsigned int n_c_dofs = context.get_dof_indices(_c_var).size();
// We get some references to cell-specific data that
// will be used to assemble the linear system.
// Element Jacobian * quadrature weights for interior integration.
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(_c_var)->get_JxW();
// The temperature shape function gradients (in global coords.)
// at interior quadrature points.
const std::vector<std::vector<libMesh::RealGradient> >& dphi =
context.get_element_fe(_c_var)->get_dphi();
const std::vector<std::vector<libMesh::Real> >& phi = context.get_element_fe(_c_var)->get_phi();
const std::vector<libMesh::Point>& q_points =
context.get_element_fe(_c_var)->get_xyz();
libMesh::DenseSubMatrix<libMesh::Number> &J_c_zc = context.get_elem_jacobian(_c_var, _zc_var);
libMesh::DenseSubMatrix<libMesh::Number> &J_c_c = context.get_elem_jacobian(_c_var, _c_var);
libMesh::DenseSubMatrix<libMesh::Number> &J_zc_c = context.get_elem_jacobian(_zc_var, _c_var);
libMesh::DenseSubMatrix<libMesh::Number> &J_zc_fc = context.get_elem_jacobian(_zc_var, _fc_var);
libMesh::DenseSubMatrix<libMesh::Number> &J_fc_zc = context.get_elem_jacobian(_fc_var, _zc_var);
libMesh::DenseSubMatrix<libMesh::Number> &J_fc_fc = context.get_elem_jacobian(_fc_var, _fc_var);
libMesh::DenseSubVector<libMesh::Number> &Rc = context.get_elem_residual( _c_var );;
libMesh::DenseSubVector<libMesh::Number> &Rzc = context.get_elem_residual( _zc_var );
libMesh::DenseSubVector<libMesh::Number> &Rfc = context.get_elem_residual( _fc_var );
// Now we will build the element Jacobian and residual.
// Constructing the residual requires the solution and its
// gradient from the previous timestep. This must be
// calculated at each quadrature point by summing the
// solution degree-of-freedom values by the appropriate
// weight functions.
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++){
libMesh::Number
c = context.interior_value(_c_var, qp),
zc = context.interior_value(_zc_var, qp),
fc = context.interior_value(_fc_var, qp);
libMesh::Gradient
grad_c = context.interior_gradient(_c_var, qp),
grad_zc = context.interior_gradient(_zc_var, qp),
grad_fc = context.interior_gradient(_fc_var, qp);
//location of quadrature point
const libMesh::Real ptx = q_points[qp](0);
const libMesh::Real pty = q_points[qp](1);
int xind, yind;
libMesh::Real xdist = 1.e10; libMesh::Real ydist = 1.e10;
for(int ii=0; ii<x_pts.size(); ii++){
libMesh::Real tmp = std::abs(ptx - x_pts[ii]);
if(xdist > tmp){
xdist = tmp;
xind = ii;
}
else
break;
}
for(int jj=0; jj<y_pts[xind].size(); jj++){
libMesh::Real tmp = std::abs(pty - y_pts[xind][jj]);
if(ydist > tmp){
ydist = tmp;
yind = jj;
}
else
break;
}
libMesh::Real u = vel_field[xind][yind](0);
libMesh::Real v = vel_field[xind][yind](1);
libMesh::NumberVectorValue U (u, v);
// First, an i-loop over the degrees of freedom.
for (unsigned int i=0; i != n_c_dofs; i++){
Rc(i) += JxW[qp]*(-_k*grad_zc*dphi[i][qp] + U*grad_zc*phi[i][qp] + 2*_R*zc*c*phi[i][qp]);
Rzc(i) += JxW[qp]*(-_k*grad_c*dphi[i][qp] - U*grad_c*phi[i][qp] + _R*c*c*phi[i][qp] + fc*phi[i][qp]);
Rfc(i) += JxW[qp]*(_beta*grad_fc*dphi[i][qp] + zc*phi[i][qp]);
if (compute_jacobian){
for (unsigned int j=0; j != n_c_dofs; j++){
J_c_zc(i,j) += JxW[qp]*(-_k*dphi[j][qp]*dphi[i][qp] + U*dphi[j][qp]*phi[i][qp]
+ 2*_R*phi[j][qp]*c*phi[i][qp]);
J_c_c(i,j) += JxW[qp]*(2*_R*zc*phi[j][qp]*phi[i][qp]);
J_zc_c(i,j) += JxW[qp]*(-_k*dphi[j][qp]*dphi[i][qp] - U*dphi[j][qp]*phi[i][qp]
+ 2*_R*c*phi[j][qp]*phi[i][qp]);
//.........这里部分代码省略.........
示例13: U
void AxisymmetricHeatTransfer<Conductivity>::element_time_derivative( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /*cache*/ )
{
#ifdef GRINS_USE_GRVY_TIMERS
this->_timer->BeginTimer("AxisymmetricHeatTransfer::element_time_derivative");
#endif
// The number of local degrees of freedom in each variable.
const unsigned int n_T_dofs = context.get_dof_indices(_T_var).size();
const unsigned int n_u_dofs = context.get_dof_indices(_u_r_var).size();
//TODO: check n_T_dofs is same as n_u_dofs, n_v_dofs, n_w_dofs
// We get some references to cell-specific data that
// will be used to assemble the linear system.
// Element Jacobian * quadrature weights for interior integration.
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(_T_var)->get_JxW();
// The temperature shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& T_phi =
context.get_element_fe(_T_var)->get_phi();
// The velocity shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& vel_phi =
context.get_element_fe(_u_r_var)->get_phi();
// The temperature shape function gradients (in global coords.)
// at interior quadrature points.
const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
context.get_element_fe(_T_var)->get_dphi();
// Physical location of the quadrature points
const std::vector<libMesh::Point>& u_qpoint =
context.get_element_fe(_u_r_var)->get_xyz();
// The subvectors and submatrices we need to fill:
libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(_T_var); // R_{T}
libMesh::DenseSubMatrix<libMesh::Number> &KTT = context.get_elem_jacobian(_T_var, _T_var); // R_{T},{T}
libMesh::DenseSubMatrix<libMesh::Number> &KTr = context.get_elem_jacobian(_T_var, _u_r_var); // R_{T},{r}
libMesh::DenseSubMatrix<libMesh::Number> &KTz = context.get_elem_jacobian(_T_var, _u_z_var); // R_{T},{z}
// Now we will build the element Jacobian and residual.
// Constructing the residual requires the solution and its
// gradient from the previous timestep. This must be
// calculated at each quadrature point by summing the
// solution degree-of-freedom values by the appropriate
// weight functions.
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
const libMesh::Number r = u_qpoint[qp](0);
// Compute the solution & its gradient at the old Newton iterate.
libMesh::Number u_r, u_z;
u_r = context.interior_value(_u_r_var, qp);
u_z = context.interior_value(_u_z_var, qp);
libMesh::Gradient grad_T;
grad_T = context.interior_gradient(_T_var, qp);
libMesh::NumberVectorValue U (u_r,u_z);
libMesh::Number k = this->_k( context, qp );
// FIXME - once we have T-dependent k, we'll need its
// derivatives in Jacobians
// libMesh::Number dk_dT = this->_k.deriv( T );
// First, an i-loop over the degrees of freedom.
for (unsigned int i=0; i != n_T_dofs; i++)
{
FT(i) += JxW[qp]*r*
(-_rho*_Cp*T_phi[i][qp]*(U*grad_T) // convection term
-k*(T_gradphi[i][qp]*grad_T) ); // diffusion term
if (compute_jacobian)
{
libmesh_assert (context.get_elem_solution_derivative() == 1.0);
for (unsigned int j=0; j != n_T_dofs; j++)
{
// TODO: precompute some terms like:
// _rho*_Cp*T_phi[i][qp]*(vel_phi[j][qp]*T_grad_phi[j][qp])
KTT(i,j) += JxW[qp] * context.get_elem_solution_derivative() *r*
(-_rho*_Cp*T_phi[i][qp]*(U*T_gradphi[j][qp]) // convection term
-k*(T_gradphi[i][qp]*T_gradphi[j][qp])); // diffusion term
} // end of the inner dof (j) loop
#if 0
if( dk_dT != 0.0 )
{
for (unsigned int j=0; j != n_T_dofs; j++)
//.........这里部分代码省略.........
示例14: element_time_derivative
void AxisymmetricBoussinesqBuoyancy::element_time_derivative( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /*cache*/ )
{
#ifdef GRINS_USE_GRVY_TIMERS
this->_timer->BeginTimer("AxisymmetricBoussinesqBuoyancy::element_time_derivative");
#endif
// The number of local degrees of freedom in each variable.
const unsigned int n_u_dofs = context.get_dof_indices(_flow_vars.u_var()).size();
const unsigned int n_T_dofs = context.get_dof_indices(_temp_vars.T_var()).size();
// Element Jacobian * quadrature weights for interior integration.
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(_flow_vars.u_var())->get_JxW();
// The velocity shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& vel_phi =
context.get_element_fe(_flow_vars.u_var())->get_phi();
// The temperature shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& T_phi =
context.get_element_fe(_temp_vars.T_var())->get_phi();
// Physical location of the quadrature points
const std::vector<libMesh::Point>& u_qpoint =
context.get_element_fe(_flow_vars.u_var())->get_xyz();
// Get residuals
libMesh::DenseSubVector<libMesh::Number> &Fr = context.get_elem_residual(_flow_vars.u_var()); // R_{r}
libMesh::DenseSubVector<libMesh::Number> &Fz = context.get_elem_residual(_flow_vars.v_var()); // R_{z}
// Get Jacobians
libMesh::DenseSubMatrix<libMesh::Number> &KrT = context.get_elem_jacobian(_flow_vars.u_var(), _temp_vars.T_var()); // R_{r},{T}
libMesh::DenseSubMatrix<libMesh::Number> &KzT = context.get_elem_jacobian(_flow_vars.v_var(), _temp_vars.T_var()); // R_{z},{T}
// Now we will build the element Jacobian and residual.
// Constructing the residual requires the solution and its
// gradient from the previous timestep. This must be
// calculated at each quadrature point by summing the
// solution degree-of-freedom values by the appropriate
// weight functions.
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
const libMesh::Number r = u_qpoint[qp](0);
// Compute the solution & its gradient at the old Newton iterate.
libMesh::Number T;
T = context.interior_value(_temp_vars.T_var(), qp);
// First, an i-loop over the velocity degrees of freedom.
// We know that n_u_dofs == n_v_dofs so we can compute contributions
// for both at the same time.
for (unsigned int i=0; i != n_u_dofs; i++)
{
Fr(i) += -_rho*_beta_T*(T - _T_ref)*_g(0)*vel_phi[i][qp]*r*JxW[qp];
Fz(i) += -_rho*_beta_T*(T - _T_ref)*_g(1)*vel_phi[i][qp]*r*JxW[qp];
if (compute_jacobian && context.get_elem_solution_derivative())
{
for (unsigned int j=0; j != n_T_dofs; j++)
{
const libMesh::Number val =
-_rho*_beta_T*vel_phi[i][qp]*T_phi[j][qp]*r*JxW[qp]
* context.get_elem_solution_derivative();
KrT(i,j) += val*_g(0);
KzT(i,j) += val*_g(1);
} // End j dof loop
} // End compute_jacobian check
} // End i dof loop
} // End quadrature loop
#ifdef GRINS_USE_GRVY_TIMERS
this->_timer->EndTimer("AxisymmetricBoussinesqBuoyancy::element_time_derivative");
#endif
return;
}
示例15: U
void VelocityPenaltyAdjointStabilization<Mu>::element_constraint( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /*cache*/ )
{
#ifdef GRINS_USE_GRVY_TIMERS
this->_timer->BeginTimer("VelocityPenaltyAdjointStabilization::element_constraint");
#endif
// The number of local degrees of freedom in each variable.
const unsigned int n_p_dofs = context.get_dof_indices(this->_press_var.p()).size();
const unsigned int n_u_dofs = context.get_dof_indices(this->_flow_vars.u()).size();
// Element Jacobian * quadrature weights for interior integration.
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(this->_flow_vars.u())->get_JxW();
const std::vector<libMesh::Point>& u_qpoint =
context.get_element_fe(this->_flow_vars.u())->get_xyz();
const std::vector<std::vector<libMesh::Real> >& u_phi =
context.get_element_fe(this->_flow_vars.u())->get_phi();
const std::vector<std::vector<libMesh::RealGradient> >& p_dphi =
context.get_element_fe(this->_press_var.p())->get_dphi();
libMesh::DenseSubVector<libMesh::Number> &Fp = context.get_elem_residual(this->_press_var.p()); // R_{p}
libMesh::DenseSubMatrix<libMesh::Number> &Kpu =
context.get_elem_jacobian(this->_press_var.p(), this->_flow_vars.u()); // J_{pu}
libMesh::DenseSubMatrix<libMesh::Number> &Kpv =
context.get_elem_jacobian(this->_press_var.p(), this->_flow_vars.v()); // J_{pv}
libMesh::DenseSubMatrix<libMesh::Number> *Kpw = NULL;
if(this->mesh_dim(context) == 3)
{
Kpw = &context.get_elem_jacobian
(this->_press_var.p(), this->_flow_vars.w()); // J_{pw}
}
// Now we will build the element Jacobian and residual.
// Constructing the residual requires the solution and its
// gradient from the previous timestep. This must be
// calculated at each quadrature point by summing the
// solution degree-of-freedom values by the appropriate
// weight functions.
unsigned int n_qpoints = context.get_element_qrule().n_points();
libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u());
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );
libMesh::RealGradient U( context.interior_value( this->_flow_vars.u(), qp ),
context.interior_value( this->_flow_vars.v(), qp ) );
if( this->mesh_dim(context) == 3 )
{
U(2) = context.interior_value( this->_flow_vars.w(), qp );
}
// Compute the viscosity at this qp
libMesh::Real mu_qp = this->_mu(context, qp);
libMesh::Real tau_M;
libMesh::Real d_tau_M_d_rho;
libMesh::Gradient d_tau_M_dU;
if (compute_jacobian)
this->_stab_helper.compute_tau_momentum_and_derivs
( context, qp, g, G, this->_rho, U, mu_qp,
tau_M, d_tau_M_d_rho, d_tau_M_dU,
this->_is_steady );
else
tau_M = this->_stab_helper.compute_tau_momentum
( context, qp, g, G, this->_rho, U, mu_qp,
this->_is_steady );
libMesh::NumberVectorValue F;
libMesh::NumberTensorValue dFdU;
libMesh::NumberTensorValue* dFdU_ptr =
compute_jacobian ? &dFdU : NULL;
if (!this->compute_force(u_qpoint[qp], context, U, F, dFdU_ptr))
continue;
// First, an i-loop over the velocity degrees of freedom.
// We know that n_u_dofs == n_v_dofs so we can compute contributions
// for both at the same time.
for (unsigned int i=0; i != n_p_dofs; i++)
{
Fp(i) += -tau_M*F*p_dphi[i][qp]*JxW[qp];
if (compute_jacobian)
{
for (unsigned int j=0; j != n_u_dofs; ++j)
{
Kpu(i,j) += -d_tau_M_dU(0)*u_phi[j][qp]*F*p_dphi[i][qp]*JxW[qp]*context.get_elem_solution_derivative();
Kpv(i,j) += -d_tau_M_dU(1)*u_phi[j][qp]*F*p_dphi[i][qp]*JxW[qp]*context.get_elem_solution_derivative();
for (unsigned int d=0; d != 3; ++d)
{
//.........这里部分代码省略.........