当前位置: 首页>>代码示例>>C++>>正文


C++ AssemblyContext::fixed_interior_value方法代码示例

本文整理汇总了C++中AssemblyContext::fixed_interior_value方法的典型用法代码示例。如果您正苦于以下问题:C++ AssemblyContext::fixed_interior_value方法的具体用法?C++ AssemblyContext::fixed_interior_value怎么用?C++ AssemblyContext::fixed_interior_value使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在AssemblyContext的用法示例。


在下文中一共展示了AssemblyContext::fixed_interior_value方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: rhocpU

  void HeatTransferStabilizationHelper::compute_res_energy_steady_and_derivs
  ( AssemblyContext& context,
    unsigned int qp,
    const libMesh::Real rho,
    const libMesh::Real Cp,
    const libMesh::Real k,
    libMesh::Real &res,
    libMesh::Real &d_res_dT,
    libMesh::Gradient &d_res_dgradT,
    libMesh::Tensor   &d_res_dhessT,
    libMesh::Gradient &d_res_dU
    ) const
  {
    libMesh::Gradient grad_T = context.fixed_interior_gradient(this->_temp_vars.T(), qp);
    libMesh::Tensor hess_T = context.fixed_interior_hessian(this->_temp_vars.T(), qp);

    libMesh::RealGradient rhocpU( rho*Cp*context.fixed_interior_value(this->_flow_vars.u(), qp),
                                  rho*Cp*context.fixed_interior_value(this->_flow_vars.v(), qp) );
    if(this->_flow_vars.dim() == 3)
      rhocpU(2) = rho*Cp*context.fixed_interior_value(this->_flow_vars.w(), qp);

    res = rhocpU*grad_T - k*(hess_T(0,0) + hess_T(1,1) + hess_T(2,2));
    d_res_dT = 0;
    d_res_dgradT = rhocpU;
    d_res_dhessT = 0;
    d_res_dhessT(0,0) = -k;
    d_res_dhessT(1,1) = -k;
    d_res_dhessT(2,2) = -k;
    d_res_dU = rho * Cp * grad_T;
  }
开发者ID:tradowsk,项目名称:grins,代码行数:30,代码来源:heat_transfer_stab_helper.C

示例2:

  void LowMachNavierStokes<Mu,SH,TC>::assemble_thermo_press_mass_residual( bool /*compute_jacobian*/,
									   AssemblyContext& context )
  {
    // The number of local degrees of freedom in each variable.
    const unsigned int n_p0_dofs = context.get_dof_indices(this->_p0_var).size();
    const unsigned int n_T_dofs = context.get_dof_indices(this->_T_var).size();
    const unsigned int n_p_dofs = context.get_dof_indices(this->_p_var).size();

    // Element Jacobian * quadrature weights for interior integration
    const std::vector<libMesh::Real> &JxW = 
      context.get_element_fe(this->_T_var)->get_JxW();

    // The temperature shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& T_phi =
      context.get_element_fe(this->_T_var)->get_phi();

    // The temperature shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& p_phi =
      context.get_element_fe(this->_p_var)->get_phi();

    // The subvectors and submatrices we need to fill:
    libMesh::DenseSubVector<libMesh::Real> &F_p0 = context.get_elem_residual(this->_p0_var);
    libMesh::DenseSubVector<libMesh::Real> &F_T = context.get_elem_residual(this->_T_var);
    libMesh::DenseSubVector<libMesh::Real> &F_p = context.get_elem_residual(this->_p_var);

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp = 0; qp != n_qpoints; ++qp)
      {
	libMesh::Number T;
	T = context.fixed_interior_value(this->_T_var, qp);

	libMesh::Number cp = this->_cp(T);
	libMesh::Number cv = cp + this->_R;
	libMesh::Number gamma = cp/cv;
	libMesh::Number one_over_gamma = 1.0/(gamma-1.0);

	libMesh::Number p0_dot = context.interior_value(this->_p0_var, qp );

	libMesh::Number p0 = context.fixed_interior_value(this->_p0_var, qp );

	for (unsigned int i=0; i != n_p0_dofs; i++)
	  {
	    F_p0(i) += p0_dot*one_over_gamma*JxW[qp];
	  }

	for (unsigned int i=0; i != n_T_dofs; i++)
	  {
	    F_T(i) -= p0_dot*T_phi[i][qp]*JxW[qp];
	  }

	for (unsigned int i=0; i != n_p_dofs; i++)
	  {
	    F_p(i) -= p0_dot/p0*p_phi[i][qp]*JxW[qp];
	  }

      }
    return;
  }
开发者ID:SylvainPlessis,项目名称:grins,代码行数:59,代码来源:low_mach_navier_stokes.C

示例3: U

void LowMachNavierStokesSPGSMStabilization<Mu,SH,TC>::assemble_energy_mass_residual( bool /*compute_jacobian*/,
        AssemblyContext& context )
{
    // The number of local degrees of freedom in each variable.
    const unsigned int n_T_dofs = context.get_dof_indices(this->_temp_vars.T()).size();

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
        context.get_element_fe(this->_temp_vars.T())->get_JxW();

    // The temperature shape functions gradients at interior quadrature points.
    const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
        context.get_element_fe(this->_temp_vars.T())->get_dphi();

    libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(this->_temp_vars.T()); // R_{T}

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
    {
        libMesh::Number u, v;
        u = context.fixed_interior_value(this->_flow_vars.u(), qp);
        v = context.fixed_interior_value(this->_flow_vars.v(), qp);

        libMesh::Gradient grad_T = context.fixed_interior_gradient(this->_temp_vars.T(), qp);

        libMesh::NumberVectorValue U(u,v);
        if (this->mesh_dim(context) == 3)
            U(2) = context.fixed_interior_value(this->_flow_vars.w(), qp); // w

        libMesh::Real T = context.fixed_interior_value( this->_temp_vars.T(), qp );
        libMesh::Real rho = this->rho( T, this->get_p0_transient( context, qp ) );

        libMesh::Real k = this->_k(T);
        libMesh::Real cp = this->_cp(T);

        libMesh::Number rho_cp = rho*this->_cp(T);

        libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u());

        libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
        libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );

        libMesh::Real tau_E = this->_stab_helper.compute_tau_energy( context, qp, g, G, rho, U, k, cp, false );

        libMesh::Real RE_t = this->compute_res_energy_transient( context, qp );

        for (unsigned int i=0; i != n_T_dofs; i++)
        {
            FT(i) -= rho_cp*tau_E*RE_t*U*T_gradphi[i][qp]*JxW[qp];
        }

    }

    return;
}
开发者ID:nicholasmalaya,项目名称:grins,代码行数:56,代码来源:low_mach_navier_stokes_spgsm_stab.C

示例4: U

  void HeatTransferSPGSMStabilization<K>::mass_residual( bool compute_jacobian,
                                                         AssemblyContext & context )
  {
    if( compute_jacobian )
      libmesh_not_implemented();

    // The number of local degrees of freedom in each variable.
    const unsigned int n_T_dofs = context.get_dof_indices(this->_temp_vars.T()).size();

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
      context.get_element_fe(this->_temp_vars.T())->get_JxW();

    const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
      context.get_element_fe(this->_temp_vars.T())->get_dphi();

    libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(this->_temp_vars.T()); // R_{T}

    libMesh::FEBase* fe = context.get_element_fe(this->_temp_vars.T());

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
        libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
        libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );

        libMesh::RealGradient U( context.fixed_interior_value( this->_flow_vars.u(), qp ),
                                 context.fixed_interior_value( this->_flow_vars.v(), qp ) );
        if( this->_flow_vars.dim() == 3 )
          {
            U(2) = context.fixed_interior_value( this->_flow_vars.w(), qp );
          }

        // Compute Conductivity at this qp
        libMesh::Real _k_qp = this->_k(context, qp);

        libMesh::Real tau_E = this->_stab_helper.compute_tau_energy( context, G, this->_rho, this->_Cp, _k_qp,  U, false );

        libMesh::Real RE_t = this->_stab_helper.compute_res_energy_transient( context, qp, this->_rho, this->_Cp );

        for (unsigned int i=0; i != n_T_dofs; i++)
          {
            FT(i) -= tau_E*RE_t*this->_rho*this->_Cp*U*T_gradphi[i][qp]*JxW[qp];
          }

      }
  }
开发者ID:tradowsk,项目名称:grins,代码行数:48,代码来源:heat_transfer_spgsm_stab.C

示例5: compute_res_energy_steady

  libMesh::Real HeatTransferStabilizationHelper::compute_res_energy_steady( AssemblyContext& context,
                                                                            unsigned int qp,
                                                                            const libMesh::Real rho,
                                                                            const libMesh::Real Cp,
                                                                            const libMesh::Real k ) const
  {
    libMesh::Gradient grad_T = context.fixed_interior_gradient(this->_temp_vars.T(), qp);
    libMesh::Tensor hess_T = context.fixed_interior_hessian(this->_temp_vars.T(), qp);

    libMesh::RealGradient rhocpU( rho*Cp*context.fixed_interior_value(this->_flow_vars.u(), qp),
                                  rho*Cp*context.fixed_interior_value(this->_flow_vars.v(), qp) );
    if(this->_flow_vars.dim() == 3)
      rhocpU(2) = rho*Cp*context.fixed_interior_value(this->_flow_vars.w(), qp);

    return rhocpU*grad_T - k*(hess_T(0,0) + hess_T(1,1) + hess_T(2,2));
  }
开发者ID:tradowsk,项目名称:grins,代码行数:16,代码来源:heat_transfer_stab_helper.C

示例6: U

  void SpalartAllmarasSPGSMStabilization<Mu>::mass_residual
  ( bool compute_jacobian, AssemblyContext & context )
  {
    // Get a pointer to the current element, we need this for computing the distance to wall for the
    // quadrature points
    libMesh::Elem &elem_pointer = context.get_elem();

    // The number of local degrees of freedom in each variable.
    const unsigned int n_nu_dofs = context.get_dof_indices(this->_turbulence_vars.nu()).size();

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
      context.get_element_fe(this->_turbulence_vars.nu())->get_JxW();

    // The pressure shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::RealGradient> >& nu_gradphi =
      context.get_element_fe(this->_turbulence_vars.nu())->get_dphi();

    libMesh::DenseSubVector<libMesh::Number> &Fnu = context.get_elem_residual(this->_turbulence_vars.nu()); // R_{nu}

    libMesh::FEBase* fe = context.get_element_fe(this->_turbulence_vars.nu());

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    // Auto pointer to distance fcn evaluated at quad points
    std::unique_ptr< libMesh::DenseVector<libMesh::Real> > distance_qp;

    // Fill the vector of distances to quadrature points
    distance_qp = this->distance_function->interpolate(&elem_pointer, context.get_element_qrule().get_points());

    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
        libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
        libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );

        libMesh::RealGradient U( context.fixed_interior_value( this->_flow_vars.u(), qp ),
                                 context.fixed_interior_value( this->_flow_vars.v(), qp ) );
        // Compute the viscosity at this qp
        libMesh::Real _mu_qp = this->_mu(context, qp);

        if( this->_flow_vars.dim() == 3 )
          {
            U(2) = context.fixed_interior_value( this->_flow_vars.w(), qp );
          }

        libMesh::Real tau_spalart = this->_stab_helper.compute_tau_spalart( context, qp, g, G, this->_rho, U, _mu_qp, this->_is_steady );

        libMesh::Real RM_spalart = this->_stab_helper.compute_res_spalart_transient( context, qp, this->_rho );

        for (unsigned int i=0; i != n_nu_dofs; i++)
          {
            Fnu(i) += -JxW[qp]*tau_spalart*RM_spalart*this->_rho*(U*nu_gradphi[i][qp]);
          }

        if( compute_jacobian )
          {
            libmesh_not_implemented();
          }

      }
  }
开发者ID:tradowsk,项目名称:grins,代码行数:61,代码来源:spalart_allmaras_spgsm_stab.C


注:本文中的AssemblyContext::fixed_interior_value方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。