本文整理汇总了C++中AssemblyContext::fixed_interior_value方法的典型用法代码示例。如果您正苦于以下问题:C++ AssemblyContext::fixed_interior_value方法的具体用法?C++ AssemblyContext::fixed_interior_value怎么用?C++ AssemblyContext::fixed_interior_value使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类AssemblyContext
的用法示例。
在下文中一共展示了AssemblyContext::fixed_interior_value方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: rhocpU
void HeatTransferStabilizationHelper::compute_res_energy_steady_and_derivs
( AssemblyContext& context,
unsigned int qp,
const libMesh::Real rho,
const libMesh::Real Cp,
const libMesh::Real k,
libMesh::Real &res,
libMesh::Real &d_res_dT,
libMesh::Gradient &d_res_dgradT,
libMesh::Tensor &d_res_dhessT,
libMesh::Gradient &d_res_dU
) const
{
libMesh::Gradient grad_T = context.fixed_interior_gradient(this->_temp_vars.T(), qp);
libMesh::Tensor hess_T = context.fixed_interior_hessian(this->_temp_vars.T(), qp);
libMesh::RealGradient rhocpU( rho*Cp*context.fixed_interior_value(this->_flow_vars.u(), qp),
rho*Cp*context.fixed_interior_value(this->_flow_vars.v(), qp) );
if(this->_flow_vars.dim() == 3)
rhocpU(2) = rho*Cp*context.fixed_interior_value(this->_flow_vars.w(), qp);
res = rhocpU*grad_T - k*(hess_T(0,0) + hess_T(1,1) + hess_T(2,2));
d_res_dT = 0;
d_res_dgradT = rhocpU;
d_res_dhessT = 0;
d_res_dhessT(0,0) = -k;
d_res_dhessT(1,1) = -k;
d_res_dhessT(2,2) = -k;
d_res_dU = rho * Cp * grad_T;
}
示例2:
void LowMachNavierStokes<Mu,SH,TC>::assemble_thermo_press_mass_residual( bool /*compute_jacobian*/,
AssemblyContext& context )
{
// The number of local degrees of freedom in each variable.
const unsigned int n_p0_dofs = context.get_dof_indices(this->_p0_var).size();
const unsigned int n_T_dofs = context.get_dof_indices(this->_T_var).size();
const unsigned int n_p_dofs = context.get_dof_indices(this->_p_var).size();
// Element Jacobian * quadrature weights for interior integration
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(this->_T_var)->get_JxW();
// The temperature shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& T_phi =
context.get_element_fe(this->_T_var)->get_phi();
// The temperature shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& p_phi =
context.get_element_fe(this->_p_var)->get_phi();
// The subvectors and submatrices we need to fill:
libMesh::DenseSubVector<libMesh::Real> &F_p0 = context.get_elem_residual(this->_p0_var);
libMesh::DenseSubVector<libMesh::Real> &F_T = context.get_elem_residual(this->_T_var);
libMesh::DenseSubVector<libMesh::Real> &F_p = context.get_elem_residual(this->_p_var);
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp = 0; qp != n_qpoints; ++qp)
{
libMesh::Number T;
T = context.fixed_interior_value(this->_T_var, qp);
libMesh::Number cp = this->_cp(T);
libMesh::Number cv = cp + this->_R;
libMesh::Number gamma = cp/cv;
libMesh::Number one_over_gamma = 1.0/(gamma-1.0);
libMesh::Number p0_dot = context.interior_value(this->_p0_var, qp );
libMesh::Number p0 = context.fixed_interior_value(this->_p0_var, qp );
for (unsigned int i=0; i != n_p0_dofs; i++)
{
F_p0(i) += p0_dot*one_over_gamma*JxW[qp];
}
for (unsigned int i=0; i != n_T_dofs; i++)
{
F_T(i) -= p0_dot*T_phi[i][qp]*JxW[qp];
}
for (unsigned int i=0; i != n_p_dofs; i++)
{
F_p(i) -= p0_dot/p0*p_phi[i][qp]*JxW[qp];
}
}
return;
}
示例3: U
void LowMachNavierStokesSPGSMStabilization<Mu,SH,TC>::assemble_energy_mass_residual( bool /*compute_jacobian*/,
AssemblyContext& context )
{
// The number of local degrees of freedom in each variable.
const unsigned int n_T_dofs = context.get_dof_indices(this->_temp_vars.T()).size();
// Element Jacobian * quadrature weights for interior integration.
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(this->_temp_vars.T())->get_JxW();
// The temperature shape functions gradients at interior quadrature points.
const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
context.get_element_fe(this->_temp_vars.T())->get_dphi();
libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(this->_temp_vars.T()); // R_{T}
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
libMesh::Number u, v;
u = context.fixed_interior_value(this->_flow_vars.u(), qp);
v = context.fixed_interior_value(this->_flow_vars.v(), qp);
libMesh::Gradient grad_T = context.fixed_interior_gradient(this->_temp_vars.T(), qp);
libMesh::NumberVectorValue U(u,v);
if (this->mesh_dim(context) == 3)
U(2) = context.fixed_interior_value(this->_flow_vars.w(), qp); // w
libMesh::Real T = context.fixed_interior_value( this->_temp_vars.T(), qp );
libMesh::Real rho = this->rho( T, this->get_p0_transient( context, qp ) );
libMesh::Real k = this->_k(T);
libMesh::Real cp = this->_cp(T);
libMesh::Number rho_cp = rho*this->_cp(T);
libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u());
libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );
libMesh::Real tau_E = this->_stab_helper.compute_tau_energy( context, qp, g, G, rho, U, k, cp, false );
libMesh::Real RE_t = this->compute_res_energy_transient( context, qp );
for (unsigned int i=0; i != n_T_dofs; i++)
{
FT(i) -= rho_cp*tau_E*RE_t*U*T_gradphi[i][qp]*JxW[qp];
}
}
return;
}
示例4: U
void HeatTransferSPGSMStabilization<K>::mass_residual( bool compute_jacobian,
AssemblyContext & context )
{
if( compute_jacobian )
libmesh_not_implemented();
// The number of local degrees of freedom in each variable.
const unsigned int n_T_dofs = context.get_dof_indices(this->_temp_vars.T()).size();
// Element Jacobian * quadrature weights for interior integration.
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(this->_temp_vars.T())->get_JxW();
const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
context.get_element_fe(this->_temp_vars.T())->get_dphi();
libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(this->_temp_vars.T()); // R_{T}
libMesh::FEBase* fe = context.get_element_fe(this->_temp_vars.T());
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );
libMesh::RealGradient U( context.fixed_interior_value( this->_flow_vars.u(), qp ),
context.fixed_interior_value( this->_flow_vars.v(), qp ) );
if( this->_flow_vars.dim() == 3 )
{
U(2) = context.fixed_interior_value( this->_flow_vars.w(), qp );
}
// Compute Conductivity at this qp
libMesh::Real _k_qp = this->_k(context, qp);
libMesh::Real tau_E = this->_stab_helper.compute_tau_energy( context, G, this->_rho, this->_Cp, _k_qp, U, false );
libMesh::Real RE_t = this->_stab_helper.compute_res_energy_transient( context, qp, this->_rho, this->_Cp );
for (unsigned int i=0; i != n_T_dofs; i++)
{
FT(i) -= tau_E*RE_t*this->_rho*this->_Cp*U*T_gradphi[i][qp]*JxW[qp];
}
}
}
示例5: compute_res_energy_steady
libMesh::Real HeatTransferStabilizationHelper::compute_res_energy_steady( AssemblyContext& context,
unsigned int qp,
const libMesh::Real rho,
const libMesh::Real Cp,
const libMesh::Real k ) const
{
libMesh::Gradient grad_T = context.fixed_interior_gradient(this->_temp_vars.T(), qp);
libMesh::Tensor hess_T = context.fixed_interior_hessian(this->_temp_vars.T(), qp);
libMesh::RealGradient rhocpU( rho*Cp*context.fixed_interior_value(this->_flow_vars.u(), qp),
rho*Cp*context.fixed_interior_value(this->_flow_vars.v(), qp) );
if(this->_flow_vars.dim() == 3)
rhocpU(2) = rho*Cp*context.fixed_interior_value(this->_flow_vars.w(), qp);
return rhocpU*grad_T - k*(hess_T(0,0) + hess_T(1,1) + hess_T(2,2));
}
示例6: U
void SpalartAllmarasSPGSMStabilization<Mu>::mass_residual
( bool compute_jacobian, AssemblyContext & context )
{
// Get a pointer to the current element, we need this for computing the distance to wall for the
// quadrature points
libMesh::Elem &elem_pointer = context.get_elem();
// The number of local degrees of freedom in each variable.
const unsigned int n_nu_dofs = context.get_dof_indices(this->_turbulence_vars.nu()).size();
// Element Jacobian * quadrature weights for interior integration.
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(this->_turbulence_vars.nu())->get_JxW();
// The pressure shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::RealGradient> >& nu_gradphi =
context.get_element_fe(this->_turbulence_vars.nu())->get_dphi();
libMesh::DenseSubVector<libMesh::Number> &Fnu = context.get_elem_residual(this->_turbulence_vars.nu()); // R_{nu}
libMesh::FEBase* fe = context.get_element_fe(this->_turbulence_vars.nu());
unsigned int n_qpoints = context.get_element_qrule().n_points();
// Auto pointer to distance fcn evaluated at quad points
std::unique_ptr< libMesh::DenseVector<libMesh::Real> > distance_qp;
// Fill the vector of distances to quadrature points
distance_qp = this->distance_function->interpolate(&elem_pointer, context.get_element_qrule().get_points());
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );
libMesh::RealGradient U( context.fixed_interior_value( this->_flow_vars.u(), qp ),
context.fixed_interior_value( this->_flow_vars.v(), qp ) );
// Compute the viscosity at this qp
libMesh::Real _mu_qp = this->_mu(context, qp);
if( this->_flow_vars.dim() == 3 )
{
U(2) = context.fixed_interior_value( this->_flow_vars.w(), qp );
}
libMesh::Real tau_spalart = this->_stab_helper.compute_tau_spalart( context, qp, g, G, this->_rho, U, _mu_qp, this->_is_steady );
libMesh::Real RM_spalart = this->_stab_helper.compute_res_spalart_transient( context, qp, this->_rho );
for (unsigned int i=0; i != n_nu_dofs; i++)
{
Fnu(i) += -JxW[qp]*tau_spalart*RM_spalart*this->_rho*(U*nu_gradphi[i][qp]);
}
if( compute_jacobian )
{
libmesh_not_implemented();
}
}
}