本文整理汇总了C++中AssemblyContext::get_elem_jacobian方法的典型用法代码示例。如果您正苦于以下问题:C++ AssemblyContext::get_elem_jacobian方法的具体用法?C++ AssemblyContext::get_elem_jacobian怎么用?C++ AssemblyContext::get_elem_jacobian使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类AssemblyContext
的用法示例。
在下文中一共展示了AssemblyContext::get_elem_jacobian方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Fs
void AveragedTurbine<Mu>::nonlocal_time_derivative(bool compute_jacobian,
AssemblyContext& context,
CachedValues& /* cache */ )
{
libMesh::DenseSubMatrix<libMesh::Number> &Kss =
context.get_elem_jacobian(this->fan_speed_var(), this->fan_speed_var()); // R_{s},{s}
libMesh::DenseSubVector<libMesh::Number> &Fs =
context.get_elem_residual(this->fan_speed_var()); // R_{s}
const std::vector<libMesh::dof_id_type>& dof_indices =
context.get_dof_indices(this->fan_speed_var());
const libMesh::Number fan_speed =
context.get_system().current_solution(dof_indices[0]);
const libMesh::Number output_torque =
this->torque_function(libMesh::Point(0), fan_speed);
Fs(0) += output_torque;
if (compute_jacobian)
{
// FIXME: we should replace this FEM with a hook to the AD fparser stuff
const libMesh::Number epsilon = 1e-6;
const libMesh::Number output_torque_deriv =
(this->torque_function(libMesh::Point(0), fan_speed+epsilon) -
this->torque_function(libMesh::Point(0), fan_speed-epsilon)) / (2*epsilon);
Kss(0,0) += output_torque_deriv * context.get_elem_solution_derivative();
}
return;
}
示例2: F
void HeatConduction<K>::mass_residual( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /*cache*/ )
{
// First we get some references to cell-specific data that
// will be used to assemble the linear system.
// Element Jacobian * quadrature weights for interior integration
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(_temp_vars.T_var())->get_JxW();
// The shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& phi =
context.get_element_fe(_temp_vars.T_var())->get_phi();
// The number of local degrees of freedom in each variable
const unsigned int n_T_dofs = context.get_dof_indices(_temp_vars.T_var()).size();
// The subvectors and submatrices we need to fill:
libMesh::DenseSubVector<libMesh::Real> &F =
context.get_elem_residual(_temp_vars.T_var());
libMesh::DenseSubMatrix<libMesh::Real> &M =
context.get_elem_jacobian(_temp_vars.T_var(), _temp_vars.T_var());
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp = 0; qp != n_qpoints; ++qp)
{
// For the mass residual, we need to be a little careful.
// The time integrator is handling the time-discretization
// for us so we need to supply M(u_fixed)*u' for the residual.
// u_fixed will be given by the fixed_interior_value function
// while u' will be given by the interior_rate function.
libMesh::Real T_dot;
context.interior_rate(_temp_vars.T_var(), qp, T_dot);
for (unsigned int i = 0; i != n_T_dofs; ++i)
{
F(i) -= JxW[qp]*(_rho*_Cp*T_dot*phi[i][qp] );
if( compute_jacobian )
{
for (unsigned int j=0; j != n_T_dofs; j++)
{
// We're assuming rho, cp are constant w.r.t. T here.
M(i,j) -=
context.get_elem_solution_rate_derivative()
* JxW[qp]*_rho*_Cp*phi[j][qp]*phi[i][qp] ;
}
}// End of check on Jacobian
} // End of element dof loop
} // End of the quadrature point loop
return;
}
示例3: pin_value
void BoundaryConditions::pin_value( AssemblyContext& context,
const CachedValues& /*cache*/,
const bool request_jacobian,
const VariableIndex var,
const double pin_value,
const libMesh::Point& pin_location,
const double penalty )
{
if (context.get_elem().contains_point(pin_location))
{
libMesh::FEGenericBase<libMesh::Real>* elem_fe = NULL;
context.get_element_fe( var, elem_fe );
libMesh::DenseSubVector<libMesh::Number> &F_var = context.get_elem_residual(var); // residual
libMesh::DenseSubMatrix<libMesh::Number> &K_var = context.get_elem_jacobian(var,var); // jacobian
// The number of local degrees of freedom in p variable.
const unsigned int n_var_dofs = context.get_dof_indices(var).size();
libMesh::Number var_value = context.point_value(var, pin_location);
libMesh::FEType fe_type = elem_fe->get_fe_type();
libMesh::Point point_loc_in_masterelem =
libMesh::FEInterface::inverse_map(context.get_dim(), fe_type, &context.get_elem(), pin_location);
std::vector<libMesh::Real> phi(n_var_dofs);
for (unsigned int i=0; i != n_var_dofs; i++)
{
phi[i] = libMesh::FEInterface::shape( context.get_dim(), fe_type, &context.get_elem(), i,
point_loc_in_masterelem );
}
for (unsigned int i=0; i != n_var_dofs; i++)
{
F_var(i) += penalty*(var_value - pin_value)*phi[i];
/** \todo What the hell is the context.get_elem_solution_derivative() all about? */
if (request_jacobian && context.get_elem_solution_derivative())
{
libmesh_assert (context.get_elem_solution_derivative() == 1.0);
for (unsigned int j=0; j != n_var_dofs; j++)
K_var(i,j) += penalty*phi[i]*phi[j];
} // End if request_jacobian
} // End i loop
} // End if pin_location
return;
}
示例4: nonlocal_constraint
void ScalarODE::nonlocal_constraint(bool compute_jacobian,
AssemblyContext& context,
CachedValues& /* cache */ )
{
libMesh::DenseSubMatrix<libMesh::Number> &Kss =
context.get_elem_jacobian(_scalar_ode_var, _scalar_ode_var); // R_{s},{s}
libMesh::DenseSubVector<libMesh::Number> &Fs =
context.get_elem_residual(_scalar_ode_var); // R_{s}
const libMesh::Number constraint =
(*constraint_function)(context, libMesh::Point(0),
context.get_time());
Fs(0) += constraint;
if (compute_jacobian)
{
// FIXME: we should replace this hacky FDM with a hook to the
// AD fparser stuff
libMesh::DenseSubVector<libMesh::Number> &Us =
const_cast<libMesh::DenseSubVector<libMesh::Number>&>
(context.get_elem_solution(_scalar_ode_var)); // U_{s}
const libMesh::Number s = Us(0);
Us(0) = s + this->_epsilon;
libMesh::Number constraint_jacobian =
(*constraint_function)(context, libMesh::Point(0),
context.get_time());
Us(0) = s - this->_epsilon;
constraint_jacobian -=
(*constraint_function)(context, libMesh::Point(0),
context.get_time());
Us(0) = s;
constraint_jacobian /= (2*this->_epsilon);
Kss(0,0) += constraint_jacobian *
context.get_elem_solution_derivative();
}
return;
}
示例5: Us
void AveragedTurbine<Mu>::nonlocal_mass_residual( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /* cache */ )
{
libMesh::DenseSubMatrix<libMesh::Number> &Kss =
context.get_elem_jacobian(this->fan_speed_var(), this->fan_speed_var()); // R_{s},{s}
libMesh::DenseSubVector<libMesh::Number> &Fs =
context.get_elem_residual(this->fan_speed_var()); // R_{s}
const libMesh::DenseSubVector<libMesh::Number> &Us =
context.get_elem_solution_rate(this->fan_speed_var());
const libMesh::Number& fan_speed = Us(0);
Fs(0) -= this->moment_of_inertia * fan_speed;
if (compute_jacobian)
{
Kss(0,0) -= this->moment_of_inertia * context.get_elem_solution_rate_derivative();
}
return;
}
示例6: u_gradphi
void ElasticMembranePressure<PressureType>::element_time_derivative
( bool compute_jacobian, AssemblyContext & context )
{
unsigned int u_var = this->_disp_vars.u();
unsigned int v_var = this->_disp_vars.v();
unsigned int w_var = this->_disp_vars.w();
const unsigned int n_u_dofs = context.get_dof_indices(u_var).size();
const std::vector<libMesh::Real> &JxW =
this->get_fe(context)->get_JxW();
const std::vector<std::vector<libMesh::Real> >& u_phi =
this->get_fe(context)->get_phi();
const MultiphysicsSystem & system = context.get_multiphysics_system();
unsigned int u_dot_var = system.get_second_order_dot_var(u_var);
unsigned int v_dot_var = system.get_second_order_dot_var(v_var);
unsigned int w_dot_var = system.get_second_order_dot_var(w_var);
libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(u_dot_var);
libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(v_dot_var);
libMesh::DenseSubVector<libMesh::Number> &Fw = context.get_elem_residual(w_dot_var);
libMesh::DenseSubMatrix<libMesh::Number>& Kuv = context.get_elem_jacobian(u_dot_var,v_var);
libMesh::DenseSubMatrix<libMesh::Number>& Kuw = context.get_elem_jacobian(u_dot_var,w_var);
libMesh::DenseSubMatrix<libMesh::Number>& Kvu = context.get_elem_jacobian(v_dot_var,u_var);
libMesh::DenseSubMatrix<libMesh::Number>& Kvw = context.get_elem_jacobian(v_dot_var,w_var);
libMesh::DenseSubMatrix<libMesh::Number>& Kwu = context.get_elem_jacobian(w_dot_var,u_var);
libMesh::DenseSubMatrix<libMesh::Number>& Kwv = context.get_elem_jacobian(w_dot_var,v_var);
unsigned int n_qpoints = context.get_element_qrule().n_points();
// All shape function gradients are w.r.t. master element coordinates
const std::vector<std::vector<libMesh::Real> >& dphi_dxi =
this->get_fe(context)->get_dphidxi();
const std::vector<std::vector<libMesh::Real> >& dphi_deta =
this->get_fe(context)->get_dphideta();
const libMesh::DenseSubVector<libMesh::Number>& u_coeffs = context.get_elem_solution( u_var );
const libMesh::DenseSubVector<libMesh::Number>& v_coeffs = context.get_elem_solution( v_var );
const libMesh::DenseSubVector<libMesh::Number>& w_coeffs = context.get_elem_solution( w_var );
const std::vector<libMesh::RealGradient>& dxdxi = this->get_fe(context)->get_dxyzdxi();
const std::vector<libMesh::RealGradient>& dxdeta = this->get_fe(context)->get_dxyzdeta();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
// sqrt(det(a_cov)), a_cov being the covariant metric tensor of undeformed body
libMesh::Real sqrt_a = sqrt( dxdxi[qp]*dxdxi[qp]*dxdeta[qp]*dxdeta[qp]
- dxdxi[qp]*dxdeta[qp]*dxdeta[qp]*dxdxi[qp] );
// Gradients are w.r.t. master element coordinates
libMesh::Gradient grad_u, grad_v, grad_w;
for( unsigned int d = 0; d < n_u_dofs; d++ )
{
libMesh::RealGradient u_gradphi( dphi_dxi[d][qp], dphi_deta[d][qp] );
grad_u += u_coeffs(d)*u_gradphi;
grad_v += v_coeffs(d)*u_gradphi;
grad_w += w_coeffs(d)*u_gradphi;
}
libMesh::RealGradient dudxi( grad_u(0), grad_v(0), grad_w(0) );
libMesh::RealGradient dudeta( grad_u(1), grad_v(1), grad_w(1) );
libMesh::RealGradient A_1 = dxdxi[qp] + dudxi;
libMesh::RealGradient A_2 = dxdeta[qp] + dudeta;
libMesh::RealGradient A_3 = A_1.cross(A_2);
// Compute pressure at this quadrature point
libMesh::Real press = (*_pressure)(context,qp);
// Small optimization
libMesh::Real p_over_sa = press/sqrt_a;
/* The formula here is actually
P*\sqrt{\frac{A}{a}}*A_3, where A_3 is a unit vector
But, |A_3| = \sqrt{A} so the normalizing part kills
the \sqrt{A} in the numerator, so we can leave it out
and *not* normalize A_3.
*/
libMesh::RealGradient traction = p_over_sa*A_3;
for (unsigned int i=0; i != n_u_dofs; i++)
{
// Small optimization
libMesh::Real phi_times_jac = u_phi[i][qp]*JxW[qp];
Fu(i) -= traction(0)*phi_times_jac;
Fv(i) -= traction(1)*phi_times_jac;
Fw(i) -= traction(2)*phi_times_jac;
if( compute_jacobian )
{
for (unsigned int j=0; j != n_u_dofs; j++)
//.........这里部分代码省略.........
示例7: element_time_derivative
void AxisymmetricBoussinesqBuoyancy::element_time_derivative( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /*cache*/ )
{
#ifdef GRINS_USE_GRVY_TIMERS
this->_timer->BeginTimer("AxisymmetricBoussinesqBuoyancy::element_time_derivative");
#endif
// The number of local degrees of freedom in each variable.
const unsigned int n_u_dofs = context.get_dof_indices(_flow_vars.u_var()).size();
const unsigned int n_T_dofs = context.get_dof_indices(_temp_vars.T_var()).size();
// Element Jacobian * quadrature weights for interior integration.
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(_flow_vars.u_var())->get_JxW();
// The velocity shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& vel_phi =
context.get_element_fe(_flow_vars.u_var())->get_phi();
// The temperature shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& T_phi =
context.get_element_fe(_temp_vars.T_var())->get_phi();
// Physical location of the quadrature points
const std::vector<libMesh::Point>& u_qpoint =
context.get_element_fe(_flow_vars.u_var())->get_xyz();
// Get residuals
libMesh::DenseSubVector<libMesh::Number> &Fr = context.get_elem_residual(_flow_vars.u_var()); // R_{r}
libMesh::DenseSubVector<libMesh::Number> &Fz = context.get_elem_residual(_flow_vars.v_var()); // R_{z}
// Get Jacobians
libMesh::DenseSubMatrix<libMesh::Number> &KrT = context.get_elem_jacobian(_flow_vars.u_var(), _temp_vars.T_var()); // R_{r},{T}
libMesh::DenseSubMatrix<libMesh::Number> &KzT = context.get_elem_jacobian(_flow_vars.v_var(), _temp_vars.T_var()); // R_{z},{T}
// Now we will build the element Jacobian and residual.
// Constructing the residual requires the solution and its
// gradient from the previous timestep. This must be
// calculated at each quadrature point by summing the
// solution degree-of-freedom values by the appropriate
// weight functions.
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
const libMesh::Number r = u_qpoint[qp](0);
// Compute the solution & its gradient at the old Newton iterate.
libMesh::Number T;
T = context.interior_value(_temp_vars.T_var(), qp);
// First, an i-loop over the velocity degrees of freedom.
// We know that n_u_dofs == n_v_dofs so we can compute contributions
// for both at the same time.
for (unsigned int i=0; i != n_u_dofs; i++)
{
Fr(i) += -_rho*_beta_T*(T - _T_ref)*_g(0)*vel_phi[i][qp]*r*JxW[qp];
Fz(i) += -_rho*_beta_T*(T - _T_ref)*_g(1)*vel_phi[i][qp]*r*JxW[qp];
if (compute_jacobian && context.get_elem_solution_derivative())
{
for (unsigned int j=0; j != n_T_dofs; j++)
{
const libMesh::Number val =
-_rho*_beta_T*vel_phi[i][qp]*T_phi[j][qp]*r*JxW[qp]
* context.get_elem_solution_derivative();
KrT(i,j) += val*_g(0);
KzT(i,j) += val*_g(1);
} // End j dof loop
} // End compute_jacobian check
} // End i dof loop
} // End quadrature loop
#ifdef GRINS_USE_GRVY_TIMERS
this->_timer->EndTimer("AxisymmetricBoussinesqBuoyancy::element_time_derivative");
#endif
return;
}
示例8: U
void VelocityPenalty<Mu>::element_time_derivative( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /* cache */ )
{
#ifdef GRINS_USE_GRVY_TIMERS
this->_timer->BeginTimer("VelocityPenalty::element_time_derivative");
#endif
// Element Jacobian * quadrature weights for interior integration
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(this->_flow_vars.u_var())->get_JxW();
// The shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& u_phi =
context.get_element_fe(this->_flow_vars.u_var())->get_phi();
const std::vector<libMesh::Point>& u_qpoint =
context.get_element_fe(this->_flow_vars.u_var())->get_xyz();
// The number of local degrees of freedom in each variable
const unsigned int n_u_dofs = context.get_dof_indices(this->_flow_vars.u_var()).size();
// The subvectors and submatrices we need to fill:
libMesh::DenseSubMatrix<libMesh::Number> &Kuu = context.get_elem_jacobian(this->_flow_vars.u_var(), this->_flow_vars.u_var()); // R_{u},{u}
libMesh::DenseSubMatrix<libMesh::Number> &Kuv = context.get_elem_jacobian(this->_flow_vars.u_var(), this->_flow_vars.v_var()); // R_{u},{v}
libMesh::DenseSubMatrix<libMesh::Number> &Kvu = context.get_elem_jacobian(this->_flow_vars.v_var(), this->_flow_vars.u_var()); // R_{v},{u}
libMesh::DenseSubMatrix<libMesh::Number> &Kvv = context.get_elem_jacobian(this->_flow_vars.v_var(), this->_flow_vars.v_var()); // R_{v},{v}
libMesh::DenseSubMatrix<libMesh::Number>* Kwu = NULL;
libMesh::DenseSubMatrix<libMesh::Number>* Kwv = NULL;
libMesh::DenseSubMatrix<libMesh::Number>* Kww = NULL;
libMesh::DenseSubMatrix<libMesh::Number>* Kuw = NULL;
libMesh::DenseSubMatrix<libMesh::Number>* Kvw = NULL;
libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(this->_flow_vars.u_var()); // R_{u}
libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(this->_flow_vars.v_var()); // R_{v}
libMesh::DenseSubVector<libMesh::Number>* Fw = NULL;
if( this->_dim == 3 )
{
Kuw = &context.get_elem_jacobian(this->_flow_vars.u_var(), this->_flow_vars.w_var()); // R_{u},{w}
Kvw = &context.get_elem_jacobian(this->_flow_vars.v_var(), this->_flow_vars.w_var()); // R_{v},{w}
Kwu = &context.get_elem_jacobian(this->_flow_vars.w_var(), this->_flow_vars.u_var()); // R_{w},{u}
Kwv = &context.get_elem_jacobian(this->_flow_vars.w_var(), this->_flow_vars.v_var()); // R_{w},{v}
Kww = &context.get_elem_jacobian(this->_flow_vars.w_var(), this->_flow_vars.w_var()); // R_{w},{w}
Fw = &context.get_elem_residual(this->_flow_vars.w_var()); // R_{w}
}
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
// Compute the solution at the old Newton iterate.
libMesh::Number u, v;
u = context.interior_value(this->_flow_vars.u_var(), qp);
v = context.interior_value(this->_flow_vars.v_var(), qp);
libMesh::NumberVectorValue U(u,v);
if (this->_dim == 3)
U(2) = context.interior_value(this->_flow_vars.w_var(), qp); // w
libMesh::NumberVectorValue F;
libMesh::NumberTensorValue dFdU;
libMesh::NumberTensorValue* dFdU_ptr =
compute_jacobian ? &dFdU : NULL;
if (!this->compute_force(u_qpoint[qp], context, U, F, dFdU_ptr))
continue;
const libMesh::Real jac = JxW[qp];
for (unsigned int i=0; i != n_u_dofs; i++)
{
const libMesh::Number jac_i = jac * u_phi[i][qp];
Fu(i) += F(0)*jac_i;
Fv(i) += F(1)*jac_i;
if( this->_dim == 3 )
{
(*Fw)(i) += F(2)*jac_i;
}
if( compute_jacobian )
{
for (unsigned int j=0; j != n_u_dofs; j++)
{
const libMesh::Number jac_ij = context.get_elem_solution_derivative() * jac_i * u_phi[j][qp];
Kuu(i,j) += jac_ij * dFdU(0,0);
Kuv(i,j) += jac_ij * dFdU(0,1);
Kvu(i,j) += jac_ij * dFdU(1,0);
Kvv(i,j) += jac_ij * dFdU(1,1);
if( this->_dim == 3 )
{
(*Kuw)(i,j) += jac_ij * dFdU(0,2);
(*Kvw)(i,j) += jac_ij * dFdU(1,2);
(*Kwu)(i,j) += jac_ij * dFdU(2,0);
(*Kwv)(i,j) += jac_ij * dFdU(2,1);
//.........这里部分代码省略.........
示例9: u_gradphi
void ElasticCableRayleighDamping<StressStrainLaw>::damping_residual( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /*cache*/)
{
// First, do the "mass" contribution
this->mass_residual_impl(compute_jacobian,
context,
&libMesh::FEMContext::interior_rate,
&libMesh::DiffContext::get_elem_solution_rate_derivative,
_mu_factor);
// Now do the stiffness contribution
const unsigned int n_u_dofs = context.get_dof_indices(this->_disp_vars.u()).size();
const std::vector<libMesh::Real> &JxW =
this->get_fe(context)->get_JxW();
// Residuals that we're populating
libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(this->_disp_vars.u());
libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(this->_disp_vars.v());
libMesh::DenseSubVector<libMesh::Number> &Fw = context.get_elem_residual(this->_disp_vars.w());
//Grab the Jacobian matrix as submatrices
//libMesh::DenseMatrix<libMesh::Number> &K = context.get_elem_jacobian();
libMesh::DenseSubMatrix<libMesh::Number> &Kuu = context.get_elem_jacobian(this->_disp_vars.u(),this->_disp_vars.u());
libMesh::DenseSubMatrix<libMesh::Number> &Kuv = context.get_elem_jacobian(this->_disp_vars.u(),this->_disp_vars.v());
libMesh::DenseSubMatrix<libMesh::Number> &Kuw = context.get_elem_jacobian(this->_disp_vars.u(),this->_disp_vars.w());
libMesh::DenseSubMatrix<libMesh::Number> &Kvu = context.get_elem_jacobian(this->_disp_vars.v(),this->_disp_vars.u());
libMesh::DenseSubMatrix<libMesh::Number> &Kvv = context.get_elem_jacobian(this->_disp_vars.v(),this->_disp_vars.v());
libMesh::DenseSubMatrix<libMesh::Number> &Kvw = context.get_elem_jacobian(this->_disp_vars.v(),this->_disp_vars.w());
libMesh::DenseSubMatrix<libMesh::Number> &Kwu = context.get_elem_jacobian(this->_disp_vars.w(),this->_disp_vars.u());
libMesh::DenseSubMatrix<libMesh::Number> &Kwv = context.get_elem_jacobian(this->_disp_vars.w(),this->_disp_vars.v());
libMesh::DenseSubMatrix<libMesh::Number> &Kww = context.get_elem_jacobian(this->_disp_vars.w(),this->_disp_vars.w());
unsigned int n_qpoints = context.get_element_qrule().n_points();
// All shape function gradients are w.r.t. master element coordinates
const std::vector<std::vector<libMesh::Real> >& dphi_dxi = this->get_fe(context)->get_dphidxi();
const libMesh::DenseSubVector<libMesh::Number>& u_coeffs = context.get_elem_solution( this->_disp_vars.u() );
const libMesh::DenseSubVector<libMesh::Number>& v_coeffs = context.get_elem_solution( this->_disp_vars.v() );
const libMesh::DenseSubVector<libMesh::Number>& w_coeffs = context.get_elem_solution( this->_disp_vars.w() );
const libMesh::DenseSubVector<libMesh::Number>& dudt_coeffs = context.get_elem_solution_rate( this->_disp_vars.u() );
const libMesh::DenseSubVector<libMesh::Number>& dvdt_coeffs = context.get_elem_solution_rate( this->_disp_vars.v() );
const libMesh::DenseSubVector<libMesh::Number>& dwdt_coeffs = context.get_elem_solution_rate( this->_disp_vars.w() );
// Need these to build up the covariant and contravariant metric tensors
const std::vector<libMesh::RealGradient>& dxdxi = this->get_fe(context)->get_dxyzdxi();
const unsigned int dim = 1; // The cable dimension is always 1 for this physics
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
// Gradients are w.r.t. master element coordinates
libMesh::Gradient grad_u, grad_v, grad_w;
libMesh::Gradient dgradu_dt, dgradv_dt, dgradw_dt;
for( unsigned int d = 0; d < n_u_dofs; d++ )
{
libMesh::RealGradient u_gradphi( dphi_dxi[d][qp] );
grad_u += u_coeffs(d)*u_gradphi;
grad_v += v_coeffs(d)*u_gradphi;
grad_w += w_coeffs(d)*u_gradphi;
dgradu_dt += dudt_coeffs(d)*u_gradphi;
dgradv_dt += dvdt_coeffs(d)*u_gradphi;
dgradw_dt += dwdt_coeffs(d)*u_gradphi;
}
libMesh::RealGradient grad_x( dxdxi[qp](0) );
libMesh::RealGradient grad_y( dxdxi[qp](1) );
libMesh::RealGradient grad_z( dxdxi[qp](2) );
libMesh::TensorValue<libMesh::Real> a_cov, a_contra, A_cov, A_contra;
libMesh::Real lambda_sq = 0;
this->compute_metric_tensors( qp, *(this->get_fe(context)), context,
grad_u, grad_v, grad_w,
a_cov, a_contra, A_cov, A_contra,
lambda_sq );
// Compute stress tensor
libMesh::TensorValue<libMesh::Real> tau;
ElasticityTensor C;
this->_stress_strain_law.compute_stress_and_elasticity(dim,a_contra,a_cov,A_contra,A_cov,tau,C);
libMesh::Real jac = JxW[qp];
for (unsigned int i=0; i != n_u_dofs; i++)
{
libMesh::RealGradient u_gradphi( dphi_dxi[i][qp] );
libMesh::Real u_diag_factor = _lambda_factor*this->_A*jac*tau(0,0)*dgradu_dt(0)*u_gradphi(0);
libMesh::Real v_diag_factor = _lambda_factor*this->_A*jac*tau(0,0)*dgradv_dt(0)*u_gradphi(0);
libMesh::Real w_diag_factor = _lambda_factor*this->_A*jac*tau(0,0)*dgradw_dt(0)*u_gradphi(0);
const libMesh::Real C1 = _lambda_factor*this->_A*jac*C(0,0,0,0)*u_gradphi(0);
const libMesh::Real gamma_u = (grad_x(0)+grad_u(0));
//.........这里部分代码省略.........
示例10: mass_residual
void HeatTransfer::mass_residual( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /*cache*/ )
{
#ifdef GRINS_USE_GRVY_TIMERS
this->_timer->BeginTimer("HeatTransfer::mass_residual");
#endif
// First we get some references to cell-specific data that
// will be used to assemble the linear system.
// Element Jacobian * quadrature weights for interior integration
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(_temp_vars.T_var())->get_JxW();
// The shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& phi =
context.get_element_fe(_temp_vars.T_var())->get_phi();
const std::vector<libMesh::Point>& u_qpoint =
context.get_element_fe(this->_flow_vars.u_var())->get_xyz();
// The number of local degrees of freedom in each variable
const unsigned int n_T_dofs = context.get_dof_indices(_temp_vars.T_var()).size();
// The subvectors and submatrices we need to fill:
libMesh::DenseSubVector<libMesh::Real> &F = context.get_elem_residual(_temp_vars.T_var());
libMesh::DenseSubMatrix<libMesh::Real> &M = context.get_elem_jacobian(_temp_vars.T_var(), _temp_vars.T_var());
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp = 0; qp != n_qpoints; ++qp)
{
// For the mass residual, we need to be a little careful.
// The time integrator is handling the time-discretization
// for us so we need to supply M(u_fixed)*u for the residual.
// u_fixed will be given by the fixed_interior_* functions
// while u will be given by the interior_* functions.
libMesh::Real T_dot = context.interior_value(_temp_vars.T_var(), qp);
const libMesh::Number r = u_qpoint[qp](0);
libMesh::Real jac = JxW[qp];
if( _is_axisymmetric )
{
jac *= r;
}
for (unsigned int i = 0; i != n_T_dofs; ++i)
{
F(i) += _rho*_Cp*T_dot*phi[i][qp]*jac;
if( compute_jacobian )
{
for (unsigned int j=0; j != n_T_dofs; j++)
{
// We're assuming rho, cp are constant w.r.t. T here.
M(i,j) += _rho*_Cp*phi[j][qp]*phi[i][qp]*jac;
}
}// End of check on Jacobian
} // End of element dof loop
} // End of the quadrature point loop
#ifdef GRINS_USE_GRVY_TIMERS
this->_timer->EndTimer("HeatTransfer::mass_residual");
#endif
return;
}
示例11: element_time_derivative
void PracticeCDRinv::element_time_derivative( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /*cache*/ ){
// The number of local degrees of freedom in each variable.
const unsigned int n_c_dofs = context.get_dof_indices(_c_var).size();
// We get some references to cell-specific data that
// will be used to assemble the linear system.
// Element Jacobian * quadrature weights for interior integration.
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(_c_var)->get_JxW();
// The temperature shape function gradients (in global coords.)
// at interior quadrature points.
const std::vector<std::vector<libMesh::RealGradient> >& dphi =
context.get_element_fe(_c_var)->get_dphi();
const std::vector<std::vector<libMesh::Real> >& phi = context.get_element_fe(_c_var)->get_phi();
const std::vector<libMesh::Point>& q_points =
context.get_element_fe(_c_var)->get_xyz();
libMesh::DenseSubMatrix<libMesh::Number> &J_c_zc = context.get_elem_jacobian(_c_var, _zc_var);
libMesh::DenseSubMatrix<libMesh::Number> &J_c_c = context.get_elem_jacobian(_c_var, _c_var);
libMesh::DenseSubMatrix<libMesh::Number> &J_zc_c = context.get_elem_jacobian(_zc_var, _c_var);
libMesh::DenseSubMatrix<libMesh::Number> &J_zc_fc = context.get_elem_jacobian(_zc_var, _fc_var);
libMesh::DenseSubMatrix<libMesh::Number> &J_fc_zc = context.get_elem_jacobian(_fc_var, _zc_var);
libMesh::DenseSubMatrix<libMesh::Number> &J_fc_fc = context.get_elem_jacobian(_fc_var, _fc_var);
libMesh::DenseSubVector<libMesh::Number> &Rc = context.get_elem_residual( _c_var );;
libMesh::DenseSubVector<libMesh::Number> &Rzc = context.get_elem_residual( _zc_var );
libMesh::DenseSubVector<libMesh::Number> &Rfc = context.get_elem_residual( _fc_var );
// Now we will build the element Jacobian and residual.
// Constructing the residual requires the solution and its
// gradient from the previous timestep. This must be
// calculated at each quadrature point by summing the
// solution degree-of-freedom values by the appropriate
// weight functions.
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++){
libMesh::Number
c = context.interior_value(_c_var, qp),
zc = context.interior_value(_zc_var, qp),
fc = context.interior_value(_fc_var, qp);
libMesh::Gradient
grad_c = context.interior_gradient(_c_var, qp),
grad_zc = context.interior_gradient(_zc_var, qp),
grad_fc = context.interior_gradient(_fc_var, qp);
//location of quadrature point
const libMesh::Real ptx = q_points[qp](0);
const libMesh::Real pty = q_points[qp](1);
int xind, yind;
libMesh::Real xdist = 1.e10; libMesh::Real ydist = 1.e10;
for(int ii=0; ii<x_pts.size(); ii++){
libMesh::Real tmp = std::abs(ptx - x_pts[ii]);
if(xdist > tmp){
xdist = tmp;
xind = ii;
}
else
break;
}
for(int jj=0; jj<y_pts[xind].size(); jj++){
libMesh::Real tmp = std::abs(pty - y_pts[xind][jj]);
if(ydist > tmp){
ydist = tmp;
yind = jj;
}
else
break;
}
libMesh::Real u = vel_field[xind][yind](0);
libMesh::Real v = vel_field[xind][yind](1);
libMesh::NumberVectorValue U (u, v);
// First, an i-loop over the degrees of freedom.
for (unsigned int i=0; i != n_c_dofs; i++){
Rc(i) += JxW[qp]*(-_k*grad_zc*dphi[i][qp] + U*grad_zc*phi[i][qp] + 2*_R*zc*c*phi[i][qp]);
Rzc(i) += JxW[qp]*(-_k*grad_c*dphi[i][qp] - U*grad_c*phi[i][qp] + _R*c*c*phi[i][qp] + fc*phi[i][qp]);
Rfc(i) += JxW[qp]*(_beta*grad_fc*dphi[i][qp] + zc*phi[i][qp]);
if (compute_jacobian){
for (unsigned int j=0; j != n_c_dofs; j++){
J_c_zc(i,j) += JxW[qp]*(-_k*dphi[j][qp]*dphi[i][qp] + U*dphi[j][qp]*phi[i][qp]
+ 2*_R*phi[j][qp]*c*phi[i][qp]);
J_c_c(i,j) += JxW[qp]*(2*_R*zc*phi[j][qp]*phi[i][qp]);
J_zc_c(i,j) += JxW[qp]*(-_k*dphi[j][qp]*dphi[i][qp] - U*dphi[j][qp]*phi[i][qp]
+ 2*_R*c*phi[j][qp]*phi[i][qp]);
//.........这里部分代码省略.........
示例12: U
void VelocityPenaltyAdjointStabilization<Mu>::element_constraint( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /*cache*/ )
{
#ifdef GRINS_USE_GRVY_TIMERS
this->_timer->BeginTimer("VelocityPenaltyAdjointStabilization::element_constraint");
#endif
// The number of local degrees of freedom in each variable.
const unsigned int n_p_dofs = context.get_dof_indices(this->_press_var.p()).size();
const unsigned int n_u_dofs = context.get_dof_indices(this->_flow_vars.u()).size();
// Element Jacobian * quadrature weights for interior integration.
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(this->_flow_vars.u())->get_JxW();
const std::vector<libMesh::Point>& u_qpoint =
context.get_element_fe(this->_flow_vars.u())->get_xyz();
const std::vector<std::vector<libMesh::Real> >& u_phi =
context.get_element_fe(this->_flow_vars.u())->get_phi();
const std::vector<std::vector<libMesh::RealGradient> >& p_dphi =
context.get_element_fe(this->_press_var.p())->get_dphi();
libMesh::DenseSubVector<libMesh::Number> &Fp = context.get_elem_residual(this->_press_var.p()); // R_{p}
libMesh::DenseSubMatrix<libMesh::Number> &Kpu =
context.get_elem_jacobian(this->_press_var.p(), this->_flow_vars.u()); // J_{pu}
libMesh::DenseSubMatrix<libMesh::Number> &Kpv =
context.get_elem_jacobian(this->_press_var.p(), this->_flow_vars.v()); // J_{pv}
libMesh::DenseSubMatrix<libMesh::Number> *Kpw = NULL;
if(this->mesh_dim(context) == 3)
{
Kpw = &context.get_elem_jacobian
(this->_press_var.p(), this->_flow_vars.w()); // J_{pw}
}
// Now we will build the element Jacobian and residual.
// Constructing the residual requires the solution and its
// gradient from the previous timestep. This must be
// calculated at each quadrature point by summing the
// solution degree-of-freedom values by the appropriate
// weight functions.
unsigned int n_qpoints = context.get_element_qrule().n_points();
libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u());
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );
libMesh::RealGradient U( context.interior_value( this->_flow_vars.u(), qp ),
context.interior_value( this->_flow_vars.v(), qp ) );
if( this->mesh_dim(context) == 3 )
{
U(2) = context.interior_value( this->_flow_vars.w(), qp );
}
// Compute the viscosity at this qp
libMesh::Real mu_qp = this->_mu(context, qp);
libMesh::Real tau_M;
libMesh::Real d_tau_M_d_rho;
libMesh::Gradient d_tau_M_dU;
if (compute_jacobian)
this->_stab_helper.compute_tau_momentum_and_derivs
( context, qp, g, G, this->_rho, U, mu_qp,
tau_M, d_tau_M_d_rho, d_tau_M_dU,
this->_is_steady );
else
tau_M = this->_stab_helper.compute_tau_momentum
( context, qp, g, G, this->_rho, U, mu_qp,
this->_is_steady );
libMesh::NumberVectorValue F;
libMesh::NumberTensorValue dFdU;
libMesh::NumberTensorValue* dFdU_ptr =
compute_jacobian ? &dFdU : NULL;
if (!this->compute_force(u_qpoint[qp], context, U, F, dFdU_ptr))
continue;
// First, an i-loop over the velocity degrees of freedom.
// We know that n_u_dofs == n_v_dofs so we can compute contributions
// for both at the same time.
for (unsigned int i=0; i != n_p_dofs; i++)
{
Fp(i) += -tau_M*F*p_dphi[i][qp]*JxW[qp];
if (compute_jacobian)
{
for (unsigned int j=0; j != n_u_dofs; ++j)
{
Kpu(i,j) += -d_tau_M_dU(0)*u_phi[j][qp]*F*p_dphi[i][qp]*JxW[qp]*context.get_elem_solution_derivative();
Kpv(i,j) += -d_tau_M_dU(1)*u_phi[j][qp]*F*p_dphi[i][qp]*JxW[qp]*context.get_elem_solution_derivative();
for (unsigned int d=0; d != 3; ++d)
{
//.........这里部分代码省略.........
示例13: apply_neumann_axisymmetric
void BoundaryConditions::apply_neumann_axisymmetric( AssemblyContext& context,
const CachedValues& cache,
const bool request_jacobian,
const VariableIndex var,
const libMesh::Real sign,
SharedPtr<NeumannFuncObj> neumann_func ) const
{
libMesh::FEGenericBase<libMesh::Real>* side_fe = NULL;
context.get_side_fe( var, side_fe );
// The number of local degrees of freedom
const unsigned int n_var_dofs = context.get_dof_indices(var).size();
// Element Jacobian * quadrature weight for side integration.
const std::vector<libMesh::Real> &JxW_side = side_fe->get_JxW();
// The var shape functions at side quadrature points.
const std::vector<std::vector<libMesh::Real> >& var_phi_side =
side_fe->get_phi();
// Physical location of the quadrature points
const std::vector<libMesh::Point>& var_qpoint =
side_fe->get_xyz();
const std::vector<libMesh::Point> &normals = side_fe->get_normals();
libMesh::DenseSubVector<libMesh::Number> &F_var = context.get_elem_residual(var); // residual
libMesh::DenseSubMatrix<libMesh::Number> &K_var = context.get_elem_jacobian(var,var); // jacobian
unsigned int n_qpoints = context.get_side_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
const libMesh::Point bc_value = neumann_func->value( context, cache, qp );
libMesh::Point jac_value;
if (request_jacobian)
{
jac_value = neumann_func->derivative( context, cache, qp );
}
const libMesh::Number r = var_qpoint[qp](0);
for (unsigned int i=0; i != n_var_dofs; i++)
{
F_var(i) += sign*r*JxW_side[qp]*bc_value*normals[qp]*var_phi_side[i][qp];
if (request_jacobian)
{
for (unsigned int j=0; j != n_var_dofs; j++)
{
K_var(i,j) += sign*r*JxW_side[qp]*jac_value*normals[qp]*
var_phi_side[i][qp]*var_phi_side[j][qp];
}
}
}
} // End quadrature loop
// Now must take care of the case that the boundary condition depends on variables
// other than var.
std::vector<VariableIndex> other_jac_vars = neumann_func->get_other_jac_vars();
if( (other_jac_vars.size() > 0) && request_jacobian )
{
for( std::vector<VariableIndex>::const_iterator var2 = other_jac_vars.begin();
var2 != other_jac_vars.end();
var2++ )
{
libMesh::FEGenericBase<libMesh::Real>* side_fe2 = NULL;
context.get_side_fe( *var2, side_fe2 );
libMesh::DenseSubMatrix<libMesh::Number> &K_var2 = context.get_elem_jacobian(var,*var2); // jacobian
const unsigned int n_var2_dofs = context.get_dof_indices(*var2).size();
const std::vector<std::vector<libMesh::Real> >& var2_phi_side =
side_fe2->get_phi();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
const libMesh::Number r = var_qpoint[qp](0);
const libMesh::Point jac_value = neumann_func->derivative( context, cache, qp, *var2 );
for (unsigned int i=0; i != n_var_dofs; i++)
{
for (unsigned int j=0; j != n_var2_dofs; j++)
{
K_var2(i,j) += sign*r*JxW_side[qp]*jac_value*normals[qp]*
var_phi_side[i][qp]*var2_phi_side[j][qp];
}
}
}
} // End loop over auxillary Jacobian variables
}
return;
}
示例14: U
void AxisymmetricHeatTransfer<Conductivity>::element_time_derivative( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /*cache*/ )
{
#ifdef GRINS_USE_GRVY_TIMERS
this->_timer->BeginTimer("AxisymmetricHeatTransfer::element_time_derivative");
#endif
// The number of local degrees of freedom in each variable.
const unsigned int n_T_dofs = context.get_dof_indices(_T_var).size();
const unsigned int n_u_dofs = context.get_dof_indices(_u_r_var).size();
//TODO: check n_T_dofs is same as n_u_dofs, n_v_dofs, n_w_dofs
// We get some references to cell-specific data that
// will be used to assemble the linear system.
// Element Jacobian * quadrature weights for interior integration.
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(_T_var)->get_JxW();
// The temperature shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& T_phi =
context.get_element_fe(_T_var)->get_phi();
// The velocity shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& vel_phi =
context.get_element_fe(_u_r_var)->get_phi();
// The temperature shape function gradients (in global coords.)
// at interior quadrature points.
const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
context.get_element_fe(_T_var)->get_dphi();
// Physical location of the quadrature points
const std::vector<libMesh::Point>& u_qpoint =
context.get_element_fe(_u_r_var)->get_xyz();
// The subvectors and submatrices we need to fill:
libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(_T_var); // R_{T}
libMesh::DenseSubMatrix<libMesh::Number> &KTT = context.get_elem_jacobian(_T_var, _T_var); // R_{T},{T}
libMesh::DenseSubMatrix<libMesh::Number> &KTr = context.get_elem_jacobian(_T_var, _u_r_var); // R_{T},{r}
libMesh::DenseSubMatrix<libMesh::Number> &KTz = context.get_elem_jacobian(_T_var, _u_z_var); // R_{T},{z}
// Now we will build the element Jacobian and residual.
// Constructing the residual requires the solution and its
// gradient from the previous timestep. This must be
// calculated at each quadrature point by summing the
// solution degree-of-freedom values by the appropriate
// weight functions.
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
const libMesh::Number r = u_qpoint[qp](0);
// Compute the solution & its gradient at the old Newton iterate.
libMesh::Number u_r, u_z;
u_r = context.interior_value(_u_r_var, qp);
u_z = context.interior_value(_u_z_var, qp);
libMesh::Gradient grad_T;
grad_T = context.interior_gradient(_T_var, qp);
libMesh::NumberVectorValue U (u_r,u_z);
libMesh::Number k = this->_k( context, qp );
// FIXME - once we have T-dependent k, we'll need its
// derivatives in Jacobians
// libMesh::Number dk_dT = this->_k.deriv( T );
// First, an i-loop over the degrees of freedom.
for (unsigned int i=0; i != n_T_dofs; i++)
{
FT(i) += JxW[qp]*r*
(-_rho*_Cp*T_phi[i][qp]*(U*grad_T) // convection term
-k*(T_gradphi[i][qp]*grad_T) ); // diffusion term
if (compute_jacobian)
{
libmesh_assert (context.get_elem_solution_derivative() == 1.0);
for (unsigned int j=0; j != n_T_dofs; j++)
{
// TODO: precompute some terms like:
// _rho*_Cp*T_phi[i][qp]*(vel_phi[j][qp]*T_grad_phi[j][qp])
KTT(i,j) += JxW[qp] * context.get_elem_solution_derivative() *r*
(-_rho*_Cp*T_phi[i][qp]*(U*T_gradphi[j][qp]) // convection term
-k*(T_gradphi[i][qp]*T_gradphi[j][qp])); // diffusion term
} // end of the inner dof (j) loop
#if 0
if( dk_dT != 0.0 )
{
for (unsigned int j=0; j != n_T_dofs; j++)
//.........这里部分代码省略.........
示例15: element_time_derivative
void HeatTransfer::element_time_derivative( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /*cache*/ )
{
#ifdef GRINS_USE_GRVY_TIMERS
this->_timer->BeginTimer("HeatTransfer::element_time_derivative");
#endif
// The number of local degrees of freedom in each variable.
const unsigned int n_T_dofs = context.get_dof_indices(_temp_vars.T_var()).size();
const unsigned int n_u_dofs = context.get_dof_indices(_flow_vars.u_var()).size();
//TODO: check n_T_dofs is same as n_u_dofs, n_v_dofs, n_w_dofs
// We get some references to cell-specific data that
// will be used to assemble the linear system.
// Element Jacobian * quadrature weights for interior integration.
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(_temp_vars.T_var())->get_JxW();
// The temperature shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& T_phi =
context.get_element_fe(_temp_vars.T_var())->get_phi();
// The velocity shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& vel_phi =
context.get_element_fe(_flow_vars.u_var())->get_phi();
// The temperature shape function gradients (in global coords.)
// at interior quadrature points.
const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
context.get_element_fe(_temp_vars.T_var())->get_dphi();
const std::vector<libMesh::Point>& u_qpoint =
context.get_element_fe(this->_flow_vars.u_var())->get_xyz();
libMesh::DenseSubMatrix<libMesh::Number> &KTT = context.get_elem_jacobian(_temp_vars.T_var(), _temp_vars.T_var()); // R_{T},{T}
libMesh::DenseSubMatrix<libMesh::Number> &KTu = context.get_elem_jacobian(_temp_vars.T_var(), _flow_vars.u_var()); // R_{T},{u}
libMesh::DenseSubMatrix<libMesh::Number> &KTv = context.get_elem_jacobian(_temp_vars.T_var(), _flow_vars.v_var()); // R_{T},{v}
libMesh::DenseSubMatrix<libMesh::Number>* KTw = NULL;
libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(_temp_vars.T_var()); // R_{T}
if( this->_dim == 3 )
{
KTw = &context.get_elem_jacobian(_temp_vars.T_var(), _flow_vars.w_var()); // R_{T},{w}
}
// Now we will build the element Jacobian and residual.
// Constructing the residual requires the solution and its
// gradient from the previous timestep. This must be
// calculated at each quadrature point by summing the
// solution degree-of-freedom values by the appropriate
// weight functions.
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
// Compute the solution & its gradient at the old Newton iterate.
libMesh::Number u, v;
u = context.interior_value(_flow_vars.u_var(), qp);
v = context.interior_value(_flow_vars.v_var(), qp);
libMesh::Gradient grad_T;
grad_T = context.interior_gradient(_temp_vars.T_var(), qp);
libMesh::NumberVectorValue U (u,v);
if (_dim == 3)
U(2) = context.interior_value(_flow_vars.w_var(), qp);
const libMesh::Number r = u_qpoint[qp](0);
libMesh::Real jac = JxW[qp];
if( _is_axisymmetric )
{
jac *= r;
}
// First, an i-loop over the degrees of freedom.
for (unsigned int i=0; i != n_T_dofs; i++)
{
FT(i) += jac *
(-_rho*_Cp*T_phi[i][qp]*(U*grad_T) // convection term
-_k*(T_gradphi[i][qp]*grad_T) ); // diffusion term
if (compute_jacobian)
{
for (unsigned int j=0; j != n_T_dofs; j++)
{
// TODO: precompute some terms like:
// _rho*_Cp*T_phi[i][qp]*(vel_phi[j][qp]*T_grad_phi[j][qp])
KTT(i,j) += jac *
(-_rho*_Cp*T_phi[i][qp]*(U*T_gradphi[j][qp]) // convection term
-_k*(T_gradphi[i][qp]*T_gradphi[j][qp])); // diffusion term
} // end of the inner dof (j) loop
//.........这里部分代码省略.........