当前位置: 首页>>代码示例>>C++>>正文


C++ AssemblyContext::get_dof_indices方法代码示例

本文整理汇总了C++中AssemblyContext::get_dof_indices方法的典型用法代码示例。如果您正苦于以下问题:C++ AssemblyContext::get_dof_indices方法的具体用法?C++ AssemblyContext::get_dof_indices怎么用?C++ AssemblyContext::get_dof_indices使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在AssemblyContext的用法示例。


在下文中一共展示了AssemblyContext::get_dof_indices方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1:

  void LowMachNavierStokes<Mu,SH,TC>::assemble_thermo_press_mass_residual( bool /*compute_jacobian*/,
									   AssemblyContext& context )
  {
    // The number of local degrees of freedom in each variable.
    const unsigned int n_p0_dofs = context.get_dof_indices(this->_p0_var).size();
    const unsigned int n_T_dofs = context.get_dof_indices(this->_T_var).size();
    const unsigned int n_p_dofs = context.get_dof_indices(this->_p_var).size();

    // Element Jacobian * quadrature weights for interior integration
    const std::vector<libMesh::Real> &JxW = 
      context.get_element_fe(this->_T_var)->get_JxW();

    // The temperature shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& T_phi =
      context.get_element_fe(this->_T_var)->get_phi();

    // The temperature shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& p_phi =
      context.get_element_fe(this->_p_var)->get_phi();

    // The subvectors and submatrices we need to fill:
    libMesh::DenseSubVector<libMesh::Real> &F_p0 = context.get_elem_residual(this->_p0_var);
    libMesh::DenseSubVector<libMesh::Real> &F_T = context.get_elem_residual(this->_T_var);
    libMesh::DenseSubVector<libMesh::Real> &F_p = context.get_elem_residual(this->_p_var);

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp = 0; qp != n_qpoints; ++qp)
      {
	libMesh::Number T;
	T = context.fixed_interior_value(this->_T_var, qp);

	libMesh::Number cp = this->_cp(T);
	libMesh::Number cv = cp + this->_R;
	libMesh::Number gamma = cp/cv;
	libMesh::Number one_over_gamma = 1.0/(gamma-1.0);

	libMesh::Number p0_dot = context.interior_value(this->_p0_var, qp );

	libMesh::Number p0 = context.fixed_interior_value(this->_p0_var, qp );

	for (unsigned int i=0; i != n_p0_dofs; i++)
	  {
	    F_p0(i) += p0_dot*one_over_gamma*JxW[qp];
	  }

	for (unsigned int i=0; i != n_T_dofs; i++)
	  {
	    F_T(i) -= p0_dot*T_phi[i][qp]*JxW[qp];
	  }

	for (unsigned int i=0; i != n_p_dofs; i++)
	  {
	    F_p(i) -= p0_dot/p0*p_phi[i][qp]*JxW[qp];
	  }

      }
    return;
  }
开发者ID:SylvainPlessis,项目名称:grins,代码行数:59,代码来源:low_mach_navier_stokes.C

示例2: Fs

  void AveragedTurbine<Mu>::nonlocal_time_derivative(bool compute_jacobian,
				                 AssemblyContext& context,
				                 CachedValues& /* cache */ )
  {
    libMesh::DenseSubMatrix<libMesh::Number> &Kss =
            context.get_elem_jacobian(this->fan_speed_var(), this->fan_speed_var()); // R_{s},{s}

    libMesh::DenseSubVector<libMesh::Number> &Fs =
            context.get_elem_residual(this->fan_speed_var()); // R_{s}

    const std::vector<libMesh::dof_id_type>& dof_indices =
      context.get_dof_indices(this->fan_speed_var());

    const libMesh::Number fan_speed =
      context.get_system().current_solution(dof_indices[0]);

    const libMesh::Number output_torque =
      this->torque_function(libMesh::Point(0), fan_speed);

    Fs(0) += output_torque;

    if (compute_jacobian)
      {
        // FIXME: we should replace this FEM with a hook to the AD fparser stuff
        const libMesh::Number epsilon = 1e-6;
        const libMesh::Number output_torque_deriv =
          (this->torque_function(libMesh::Point(0), fan_speed+epsilon) -
           this->torque_function(libMesh::Point(0), fan_speed-epsilon)) / (2*epsilon);

        Kss(0,0) += output_torque_deriv * context.get_elem_solution_derivative();
      }

    return;
  }
开发者ID:coreymbryant,项目名称:grins,代码行数:34,代码来源:averaged_turbine.C

示例3: apply_neumann_normal

  void BoundaryConditions::apply_neumann_normal( AssemblyContext& context,
                                                 const VariableIndex var,
                                                 const libMesh::Real sign,
                                                 const FEShape& value ) const
  {
    libMesh::FEGenericBase<FEShape>* side_fe = NULL; 
    context.get_side_fe( var, side_fe );

    // The number of local degrees of freedom in each variable.
    const unsigned int n_var_dofs = context.get_dof_indices(var).size();

    // Element Jacobian * quadrature weight for side integration.
    const std::vector<libMesh::Real> &JxW_side = side_fe->get_JxW();

    // The var shape functions at side quadrature points.
    const std::vector<std::vector<FEShape> >& var_phi_side = side_fe->get_phi();

    libMesh::DenseSubVector<libMesh::Number> &F_var = context.get_elem_residual(var); // residual

    unsigned int n_qpoints = context.get_side_qrule().n_points();
    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
	for (unsigned int i=0; i != n_var_dofs; i++)
	  {
	    F_var(i) += sign*value*var_phi_side[i][qp]*JxW_side[qp];
	  }
      }

    return;
  }
开发者ID:gdmcbain,项目名称:grins,代码行数:30,代码来源:boundary_conditions.C

示例4: F

  void HeatConduction<K>::mass_residual( bool compute_jacobian,
				      AssemblyContext& context,
				      CachedValues& /*cache*/ )
  {
    // First we get some references to cell-specific data that
    // will be used to assemble the linear system.

    // Element Jacobian * quadrature weights for interior integration
    const std::vector<libMesh::Real> &JxW = 
      context.get_element_fe(_temp_vars.T_var())->get_JxW();

    // The shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& phi = 
      context.get_element_fe(_temp_vars.T_var())->get_phi();

    // The number of local degrees of freedom in each variable
    const unsigned int n_T_dofs = context.get_dof_indices(_temp_vars.T_var()).size();

    // The subvectors and submatrices we need to fill:
    libMesh::DenseSubVector<libMesh::Real> &F =
      context.get_elem_residual(_temp_vars.T_var());

    libMesh::DenseSubMatrix<libMesh::Real> &M =
      context.get_elem_jacobian(_temp_vars.T_var(), _temp_vars.T_var());

    unsigned int n_qpoints = context.get_element_qrule().n_points();
    
    for (unsigned int qp = 0; qp != n_qpoints; ++qp)
      {
	// For the mass residual, we need to be a little careful.
	// The time integrator is handling the time-discretization
	// for us so we need to supply M(u_fixed)*u' for the residual.
	// u_fixed will be given by the fixed_interior_value function
	// while u' will be given by the interior_rate function.
        libMesh::Real T_dot;
        context.interior_rate(_temp_vars.T_var(), qp, T_dot);

	for (unsigned int i = 0; i != n_T_dofs; ++i)
	  {
	    F(i) -= JxW[qp]*(_rho*_Cp*T_dot*phi[i][qp] );

	    if( compute_jacobian )
              {
                for (unsigned int j=0; j != n_T_dofs; j++)
                  {
		    // We're assuming rho, cp are constant w.r.t. T here.
                    M(i,j) -=
                      context.get_elem_solution_rate_derivative()
                        * JxW[qp]*_rho*_Cp*phi[j][qp]*phi[i][qp] ;
                  }
              }// End of check on Jacobian

	  } // End of element dof loop

      } // End of the quadrature point loop

    return;
  }
开发者ID:jcamata,项目名称:grins,代码行数:58,代码来源:heat_conduction.C

示例5: U

void LowMachNavierStokesSPGSMStabilization<Mu,SH,TC>::assemble_energy_mass_residual( bool /*compute_jacobian*/,
        AssemblyContext& context )
{
    // The number of local degrees of freedom in each variable.
    const unsigned int n_T_dofs = context.get_dof_indices(this->_temp_vars.T()).size();

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
        context.get_element_fe(this->_temp_vars.T())->get_JxW();

    // The temperature shape functions gradients at interior quadrature points.
    const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
        context.get_element_fe(this->_temp_vars.T())->get_dphi();

    libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(this->_temp_vars.T()); // R_{T}

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
    {
        libMesh::Number u, v;
        u = context.fixed_interior_value(this->_flow_vars.u(), qp);
        v = context.fixed_interior_value(this->_flow_vars.v(), qp);

        libMesh::Gradient grad_T = context.fixed_interior_gradient(this->_temp_vars.T(), qp);

        libMesh::NumberVectorValue U(u,v);
        if (this->mesh_dim(context) == 3)
            U(2) = context.fixed_interior_value(this->_flow_vars.w(), qp); // w

        libMesh::Real T = context.fixed_interior_value( this->_temp_vars.T(), qp );
        libMesh::Real rho = this->rho( T, this->get_p0_transient( context, qp ) );

        libMesh::Real k = this->_k(T);
        libMesh::Real cp = this->_cp(T);

        libMesh::Number rho_cp = rho*this->_cp(T);

        libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u());

        libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
        libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );

        libMesh::Real tau_E = this->_stab_helper.compute_tau_energy( context, qp, g, G, rho, U, k, cp, false );

        libMesh::Real RE_t = this->compute_res_energy_transient( context, qp );

        for (unsigned int i=0; i != n_T_dofs; i++)
        {
            FT(i) -= rho_cp*tau_E*RE_t*U*T_gradphi[i][qp]*JxW[qp];
        }

    }

    return;
}
开发者ID:nicholasmalaya,项目名称:grins,代码行数:56,代码来源:low_mach_navier_stokes_spgsm_stab.C

示例6: U

  void LowMachNavierStokes<Mu,SH,TC>::assemble_mass_time_deriv( bool /*compute_jacobian*/, 
								AssemblyContext& context,
								CachedValues& cache )
  {
    // The number of local degrees of freedom in each variable.
    const unsigned int n_p_dofs = context.get_dof_indices(this->_p_var).size();

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
      context.get_element_fe(this->_u_var)->get_JxW();

    // The pressure shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& p_phi =
      context.get_element_fe(this->_p_var)->get_phi();

    libMesh::DenseSubVector<libMesh::Number> &Fp = context.get_elem_residual(this->_p_var); // R_{p}

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
	libMesh::Number u, v, T;
	u = cache.get_cached_values(Cache::X_VELOCITY)[qp];
	v = cache.get_cached_values(Cache::Y_VELOCITY)[qp];

	T = cache.get_cached_values(Cache::TEMPERATURE)[qp];

	libMesh::Gradient grad_u = cache.get_cached_gradient_values(Cache::X_VELOCITY_GRAD)[qp];
	libMesh::Gradient grad_v = cache.get_cached_gradient_values(Cache::Y_VELOCITY_GRAD)[qp];

	libMesh::Gradient grad_T = cache.get_cached_gradient_values(Cache::TEMPERATURE_GRAD)[qp];

	libMesh::NumberVectorValue U(u,v);
	if (this->_dim == 3)
	  U(2) = cache.get_cached_values(Cache::Z_VELOCITY)[qp]; // w

	libMesh::Number divU = grad_u(0) + grad_v(1);
	if (this->_dim == 3)
          {
	    libMesh::Gradient grad_w = cache.get_cached_gradient_values(Cache::Z_VELOCITY_GRAD)[qp];
	    divU += grad_w(2);
          }

	// Now a loop over the pressure degrees of freedom.  This
	// computes the contributions of the continuity equation.
	for (unsigned int i=0; i != n_p_dofs; i++)
	  {
	    Fp(i) += (-U*grad_T/T + divU)*p_phi[i][qp]*JxW[qp];
	  }
      }

    return;
  }
开发者ID:SylvainPlessis,项目名称:grins,代码行数:53,代码来源:low_mach_navier_stokes.C

示例7: element_qoi_derivative

  void ParsedInteriorQoI::element_qoi_derivative( AssemblyContext& context,
                                                  const unsigned int qoi_index )
  {
    libMesh::FEBase* element_fe;
    context.get_element_fe<libMesh::Real>(0, element_fe);
    const std::vector<libMesh::Real> &JxW = element_fe->get_JxW();

    const std::vector<libMesh::Point>& x_qp = element_fe->get_xyz();

    // Local DOF count and quadrature point count
    const unsigned int n_u_dofs = context.get_dof_indices().size();

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    // Local solution vector - non-const version for finite
    // differenting purposes
    libMesh::DenseVector<libMesh::Number>& elem_solution =
      const_cast<libMesh::DenseVector<libMesh::Number>&>
        (context.get_elem_solution());

    /*! \todo Need to generalize this to the multiple QoI case */
    libMesh::DenseVector<libMesh::Number> &Qu =
      context.get_qoi_derivatives()[qoi_index];

    for( unsigned int qp = 0; qp != n_qpoints; qp++ )
      {
        // Central finite differencing to approximate derivatives.
        // FIXME - we should hook the FParserAD stuff into
        // ParsedFEMFunction

        for( unsigned int i = 0; i != n_u_dofs; ++i )
          {
            libMesh::Number &current_solution = elem_solution(i);
            const libMesh::Number original_solution = current_solution;

            current_solution = original_solution + libMesh::TOLERANCE;

            const libMesh::Number plus_val =
              (*qoi_functional)(context, x_qp[qp], context.get_time());

            current_solution = original_solution - libMesh::TOLERANCE;

            const libMesh::Number minus_val =
              (*qoi_functional)(context, x_qp[qp], context.get_time());

            Qu(i) += (plus_val - minus_val) *
                     (0.5 / libMesh::TOLERANCE) * JxW[qp];

            // Don't forget to restore the correct solution...
            current_solution = original_solution;
          }
      }
  }
开发者ID:coreymbryant,项目名称:grins,代码行数:53,代码来源:parsed_interior_qoi.C

示例8: pin_value

  void BoundaryConditions::pin_value( AssemblyContext& context,
                                      const CachedValues& /*cache*/,
                                      const bool request_jacobian,
                                      const VariableIndex var, 
                                      const double pin_value,
                                      const libMesh::Point& pin_location, 
                                      const double penalty )
  {
    if (context.get_elem().contains_point(pin_location))
      {
        libMesh::FEGenericBase<libMesh::Real>* elem_fe = NULL; 
        context.get_element_fe( var, elem_fe );

	libMesh::DenseSubVector<libMesh::Number> &F_var = context.get_elem_residual(var); // residual
	libMesh::DenseSubMatrix<libMesh::Number> &K_var = context.get_elem_jacobian(var,var); // jacobian

	// The number of local degrees of freedom in p variable.
	const unsigned int n_var_dofs = context.get_dof_indices(var).size();

	libMesh::Number var_value = context.point_value(var, pin_location);

	libMesh::FEType fe_type = elem_fe->get_fe_type();
      
	libMesh::Point point_loc_in_masterelem = 
	  libMesh::FEInterface::inverse_map(context.get_dim(), fe_type, &context.get_elem(), pin_location);

	std::vector<libMesh::Real> phi(n_var_dofs);

	for (unsigned int i=0; i != n_var_dofs; i++)
          {
            phi[i] = libMesh::FEInterface::shape( context.get_dim(), fe_type, &context.get_elem(), i, 
                                                  point_loc_in_masterelem );
          }
      
	for (unsigned int i=0; i != n_var_dofs; i++)
	  {
	    F_var(i) += penalty*(var_value - pin_value)*phi[i];
	  
	    /** \todo What the hell is the context.get_elem_solution_derivative() all about? */
	    if (request_jacobian && context.get_elem_solution_derivative())
	      {
		libmesh_assert (context.get_elem_solution_derivative() == 1.0);
	      
		for (unsigned int j=0; j != n_var_dofs; j++)
		  K_var(i,j) += penalty*phi[i]*phi[j];

	      } // End if request_jacobian
	  } // End i loop
      } // End if pin_location

    return;
  }
开发者ID:gdmcbain,项目名称:grins,代码行数:52,代码来源:boundary_conditions.C

示例9: U

  void HeatTransferSPGSMStabilization<K>::element_time_derivative
  ( bool compute_jacobian, AssemblyContext & context )
  {
    // The number of local degrees of freedom in each variable.
    const unsigned int n_T_dofs = context.get_dof_indices(this->_temp_vars.T()).size();

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
      context.get_element_fe(this->_temp_vars.T())->get_JxW();

    const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
      context.get_element_fe(this->_temp_vars.T())->get_dphi();

    libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(this->_temp_vars.T()); // R_{T}

    libMesh::FEBase* fe = context.get_element_fe(this->_temp_vars.T());

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
        libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
        libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );

        libMesh::RealGradient U( context.interior_value( this->_flow_vars.u(), qp ),
                                 context.interior_value( this->_flow_vars.v(), qp ) );
        if( this->_flow_vars.dim() == 3 )
          {
            U(2) = context.interior_value( this->_flow_vars.w(), qp );
          }

        // Compute Conductivity at this qp
        libMesh::Real _k_qp = this->_k(context, qp);

        libMesh::Real tau_E = this->_stab_helper.compute_tau_energy( context, G, this->_rho, this->_Cp, _k_qp,  U, this->_is_steady );

        libMesh::Real RE_s = this->_stab_helper.compute_res_energy_steady( context, qp, this->_rho, this->_Cp, _k_qp );

        for (unsigned int i=0; i != n_T_dofs; i++)
          {
            FT(i) += -tau_E*RE_s*this->_rho*this->_Cp*U*T_gradphi[i][qp]*JxW[qp];
          }

        if( compute_jacobian )
          {
            libmesh_not_implemented();
          }

      }
  }
开发者ID:tradowsk,项目名称:grins,代码行数:50,代码来源:heat_transfer_spgsm_stab.C

示例10: FT

  void HeatTransferSource<SourceFunction>::element_time_derivative( bool /*compute_jacobian*/,
								    AssemblyContext& context,
								    CachedValues& /*cache*/ )
  {
#ifdef GRINS_USE_GRVY_TIMERS
    this->_timer->BeginTimer("HeatTransferSource::element_time_derivative");
#endif
  
    // The number of local degrees of freedom in each variable.
    const unsigned int n_T_dofs = context.get_dof_indices(_temp_vars.T_var()).size();

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
      context.get_element_fe(_temp_vars.T_var())->get_JxW();

    // The temperature shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& T_phi =
      context.get_element_fe(_temp_vars.T_var())->get_phi();

    // Locations of quadrature points
    const std::vector<libMesh::Point>& x_qp = context.get_element_fe(_temp_vars.T_var())->get_xyz();

    // Get residuals
    libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(_temp_vars.T_var()); // R_{T}

    // Now we will build the element Jacobian and residual.
    // Constructing the residual requires the solution and its
    // gradient from the previous timestep.  This must be
    // calculated at each quadrature point by summing the
    // solution degree-of-freedom values by the appropriate
    // weight functions.
    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
	libMesh::Real q = _source( x_qp[qp] );

	for (unsigned int i=0; i != n_T_dofs; i++)
	  {
	    FT(i) += q*T_phi[i][qp]*JxW[qp];
	  }
      }

#ifdef GRINS_USE_GRVY_TIMERS
    this->_timer->EndTimer("HeatTransferSource::element_time_derivative");
#endif

    return;
  }
开发者ID:SylvainPlessis,项目名称:grins,代码行数:49,代码来源:heat_transfer_source.C

示例11: side_qoi_derivative

  void AverageNusseltNumber::side_qoi_derivative( AssemblyContext& context,
                                                  const unsigned int qoi_index )
  {

    for( std::set<libMesh::boundary_id_type>::const_iterator id = _bc_ids.begin();
	 id != _bc_ids.end(); id++ )
      {
	if( context.has_side_boundary_id( (*id) ) )
	  {
	    libMesh::FEBase* T_side_fe;
	    context.get_side_fe<libMesh::Real>(this->_T_var, T_side_fe);

	    const std::vector<libMesh::Real> &JxW = T_side_fe->get_JxW();
	    
	    const std::vector<libMesh::Point>& normals = T_side_fe->get_normals();

	    unsigned int n_qpoints = context.get_side_qrule().n_points();
	    
            const unsigned int n_T_dofs = context.get_dof_indices(_T_var).size();

            const std::vector<std::vector<libMesh::Gradient> >& T_gradphi = T_side_fe->get_dphi();

	    libMesh::DenseSubVector<libMesh::Number>& dQ_dT =
              context.get_qoi_derivatives(qoi_index, _T_var);

	    // Loop over quadrature points  
	    for (unsigned int qp = 0; qp != n_qpoints; qp++)
	      {
		// Get the solution value at the quadrature point
		libMesh::Gradient grad_T = 0.0; 
		context.side_gradient(this->_T_var, qp, grad_T);
		
		// Update the elemental increment dR for each qp
		//qoi += (this->_scaling)*(this->_k)*(grad_T*normals[qp])*JxW[qp];

                for( unsigned int i = 0; i != n_T_dofs; i++ )
                  {
                    dQ_dT(i) += _scaling*_k*T_gradphi[i][qp]*normals[qp]*JxW[qp];
                  }

	      } // quadrature loop

	  } // end check on boundary id

      }

    return;
  }
开发者ID:vikramvgarg,项目名称:grins,代码行数:48,代码来源:average_nusselt_number.C

示例12:

  void ConstantSourceTerm::element_time_derivative
  ( bool /*compute_jacobian*/, AssemblyContext & context )
  {
    for( std::vector<VariableIndex>::const_iterator v_it = _vars.begin();
         v_it != _vars.end(); ++v_it )
      {
        VariableIndex var = *v_it;

        // The number of local degrees of freedom in each variable.
        const unsigned int n_dofs = context.get_dof_indices(var).size();

        // Element Jacobian * quadrature weights for interior integration.
        const std::vector<libMesh::Real> &JxW =
          context.get_element_fe(var)->get_JxW();

        // The temperature shape functions at interior quadrature points.
        const std::vector<std::vector<libMesh::Real> >& phi =
          context.get_element_fe(var)->get_phi();

        // Get residuals
        libMesh::DenseSubVector<libMesh::Number> &F_var = context.get_elem_residual(var);

        // Now we will build the element Jacobian and residual.
        // Constructing the residual requires the solution and its
        // gradient from the previous timestep.  This must be
        // calculated at each quadrature point by summing the
        // solution degree-of-freedom values by the appropriate
        // weight functions.
        unsigned int n_qpoints = context.get_element_qrule().n_points();

        for (unsigned int qp=0; qp != n_qpoints; qp++)
          {
            for (unsigned int i=0; i != n_dofs; i++)
              {
                F_var(i) += (this->_value)*phi[i][qp]*JxW[qp];
              }
          }

      } // Variable loop

    return;
  }
开发者ID:borisboutkov,项目名称:grins,代码行数:42,代码来源:constant_source_term.C

示例13:

  bool GasRecombinationCatalyticWall<Chemistry>::eval_flux( bool compute_jacobian,
                                                            AssemblyContext& context,
                                                            libMesh::Real sign,
                                                            bool is_axisymmetric )
  {
    libMesh::FEGenericBase<libMesh::Real>* side_fe = NULL;
    context.get_side_fe( _reactant_var_idx, side_fe );

    // The number of local degrees of freedom in each variable.
    const unsigned int n_var_dofs = context.get_dof_indices(_reactant_var_idx).size();

    libmesh_assert_equal_to( n_var_dofs, context.get_dof_indices(_product_var_idx).size() );

    // Element Jacobian * quadrature weight for side integration.
    const std::vector<libMesh::Real> &JxW_side = side_fe->get_JxW();

    // The var shape functions at side quadrature points.
    const std::vector<std::vector<libMesh::Real> >& var_phi_side = side_fe->get_phi();

    // Physical location of the quadrature points
    const std::vector<libMesh::Point>& var_qpoint = side_fe->get_xyz();

    // reactant residual
    libMesh::DenseSubVector<libMesh::Number> &F_r_var = context.get_elem_residual(_reactant_var_idx);

    // product residual
    libMesh::DenseSubVector<libMesh::Number> &F_p_var = context.get_elem_residual(_product_var_idx);

    unsigned int n_qpoints = context.get_side_qrule().n_points();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
        libMesh::Real jac = JxW_side[qp];

        if(is_axisymmetric)
          {
            const libMesh::Number r = var_qpoint[qp](0);
            jac *= r;
          }

        std::vector<libMesh::Real> mass_fractions(this->_chem_ptr->n_species());
        for( unsigned int s = 0; s < this->_chem_ptr->n_species(); s++ )
          mass_fractions[s] = context.side_value(this->_species_vars[s], qp);

        libMesh::Real Y_r = mass_fractions[this->_reactant_species_idx];
        libMesh::Real T =  context.side_value(this->_T_var, qp);
        libMesh::Real R_mix = this->_chem_ptr->R_mix(mass_fractions);
        libMesh::Real rho = this->rho( T, this->_p0, R_mix );

         const libMesh::Real r_value = this->compute_reactant_mass_flux(rho, Y_r, T);

         const libMesh::Real p_value = -r_value;

         for (unsigned int i=0; i != n_var_dofs; i++)
          {
            F_r_var(i) += sign*r_value*var_phi_side[i][qp]*jac;

            F_p_var(i) += sign*p_value*var_phi_side[i][qp]*jac;

            if( compute_jacobian )
              libmesh_not_implemented();
          }
      }

    // We're not computing the Jacobian yet
    return false;
  }
开发者ID:coreymbryant,项目名称:grins,代码行数:67,代码来源:gas_recombination_catalytic_wall.C

示例14: U

  void AveragedTurbine<Mu>::element_time_derivative( bool compute_jacobian,
					      AssemblyContext& context,
					      CachedValues& /* cache */ )
  {
#ifdef GRINS_USE_GRVY_TIMERS
    this->_timer->BeginTimer("AveragedTurbine::element_time_derivative");
#endif

    // Element Jacobian * quadrature weights for interior integration
    const std::vector<libMesh::Real> &JxW = 
      context.get_element_fe(this->_flow_vars.u())->get_JxW();

    // The shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& u_phi = 
      context.get_element_fe(this->_flow_vars.u())->get_phi();

    const std::vector<libMesh::Point>& u_qpoint = 
      context.get_element_fe(this->_flow_vars.u())->get_xyz();

    // The number of local degrees of freedom in each variable
    const unsigned int n_u_dofs = context.get_dof_indices(this->_flow_vars.u()).size();

    // The subvectors and submatrices we need to fill:
    libMesh::DenseSubMatrix<libMesh::Number> &Kuu = context.get_elem_jacobian(this->_flow_vars.u(), this->_flow_vars.u()); // R_{u},{u}
    libMesh::DenseSubMatrix<libMesh::Number> &Kuv = context.get_elem_jacobian(this->_flow_vars.u(), this->_flow_vars.v()); // R_{u},{v}
    libMesh::DenseSubMatrix<libMesh::Number> &Kvu = context.get_elem_jacobian(this->_flow_vars.v(), this->_flow_vars.u()); // R_{v},{u}
    libMesh::DenseSubMatrix<libMesh::Number> &Kvv = context.get_elem_jacobian(this->_flow_vars.v(), this->_flow_vars.v()); // R_{v},{v}

    libMesh::DenseSubMatrix<libMesh::Number> &Kus =
            context.get_elem_jacobian(this->_flow_vars.u(),
                                      this->fan_speed_var()); // R_{u},{s}
    libMesh::DenseSubMatrix<libMesh::Number> &Ksu =
            context.get_elem_jacobian(this->fan_speed_var(),
                                      this->_flow_vars.u()); // R_{s},{u}
    libMesh::DenseSubMatrix<libMesh::Number> &Kvs =
            context.get_elem_jacobian(this->_flow_vars.v(),
                                      this->fan_speed_var()); // R_{v},{s}
    libMesh::DenseSubMatrix<libMesh::Number> &Ksv =
            context.get_elem_jacobian(this->fan_speed_var(),
                                      this->_flow_vars.v()); // R_{s},{v}
    libMesh::DenseSubMatrix<libMesh::Number> &Kss =
            context.get_elem_jacobian(this->fan_speed_var(),
                                      this->fan_speed_var()); // R_{s},{s}

    libMesh::DenseSubMatrix<libMesh::Number>* Kwu = NULL;
    libMesh::DenseSubMatrix<libMesh::Number>* Kwv = NULL;
    libMesh::DenseSubMatrix<libMesh::Number>* Kww = NULL;
    libMesh::DenseSubMatrix<libMesh::Number>* Kuw = NULL;
    libMesh::DenseSubMatrix<libMesh::Number>* Kvw = NULL;

    libMesh::DenseSubMatrix<libMesh::Number>* Ksw = NULL;
    libMesh::DenseSubMatrix<libMesh::Number>* Kws = NULL;

    libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(this->_flow_vars.u()); // R_{u}
    libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(this->_flow_vars.v()); // R_{v}
    libMesh::DenseSubVector<libMesh::Number>* Fw = NULL;

    libMesh::DenseSubVector<libMesh::Number> &Fs = context.get_elem_residual(this->fan_speed_var()); // R_{s}

    if( this->mesh_dim(context) == 3 )
      {
        Kuw = &context.get_elem_jacobian(this->_flow_vars.u(), this->_flow_vars.w()); // R_{u},{w}
        Kvw = &context.get_elem_jacobian(this->_flow_vars.v(), this->_flow_vars.w()); // R_{v},{w}

        Kwu = &context.get_elem_jacobian(this->_flow_vars.w(), this->_flow_vars.u()); // R_{w},{u}
        Kwv = &context.get_elem_jacobian(this->_flow_vars.w(), this->_flow_vars.v()); // R_{w},{v}
        Kww = &context.get_elem_jacobian(this->_flow_vars.w(), this->_flow_vars.w()); // R_{w},{w}
        Fw  = &context.get_elem_residual(this->_flow_vars.w()); // R_{w}

        Ksw = &context.get_elem_jacobian(this->fan_speed_var(), this->_flow_vars.w()); // R_{s},{w}
        Kws = &context.get_elem_jacobian(this->_flow_vars.w(), this->fan_speed_var()); // R_{w},{s}

        Fw  = &context.get_elem_residual(this->_flow_vars.w()); // R_{w}
      }

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
        // Compute the solution at the old Newton iterate.
        libMesh::Number u, v, s;
        u = context.interior_value(this->_flow_vars.u(), qp);
        v = context.interior_value(this->_flow_vars.v(), qp);
        s = context.interior_value(this->fan_speed_var(), qp);

        libMesh::NumberVectorValue U(u,v);
        if (this->mesh_dim(context) == 3)
          U(2) = context.interior_value(this->_flow_vars.w(), qp); // w

        libMesh::NumberVectorValue U_B_1;
        libMesh::NumberVectorValue F;
        libMesh::NumberTensorValue dFdU;
        libMesh::NumberTensorValue* dFdU_ptr =
          compute_jacobian ? &dFdU : NULL;
        libMesh::NumberVectorValue dFds;
        libMesh::NumberVectorValue* dFds_ptr =
          compute_jacobian ? &dFds : NULL;
        if (!this->compute_force(u_qpoint[qp], context.time, U, s,
                                 U_B_1, F, dFdU_ptr, dFds_ptr))
          continue;
//.........这里部分代码省略.........
开发者ID:coreymbryant,项目名称:grins,代码行数:101,代码来源:averaged_turbine.C

示例15: element_time_derivative

  void AxisymmetricBoussinesqBuoyancy::element_time_derivative( bool compute_jacobian,
								AssemblyContext& context,
								CachedValues& /*cache*/ )
  {
#ifdef GRINS_USE_GRVY_TIMERS
    this->_timer->BeginTimer("AxisymmetricBoussinesqBuoyancy::element_time_derivative");
#endif

    // The number of local degrees of freedom in each variable.
    const unsigned int n_u_dofs = context.get_dof_indices(_flow_vars.u_var()).size();
    const unsigned int n_T_dofs = context.get_dof_indices(_temp_vars.T_var()).size();

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
      context.get_element_fe(_flow_vars.u_var())->get_JxW();

    // The velocity shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& vel_phi =
      context.get_element_fe(_flow_vars.u_var())->get_phi();

    // The temperature shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& T_phi =
      context.get_element_fe(_temp_vars.T_var())->get_phi();

    // Physical location of the quadrature points
    const std::vector<libMesh::Point>& u_qpoint =
      context.get_element_fe(_flow_vars.u_var())->get_xyz();

    // Get residuals
    libMesh::DenseSubVector<libMesh::Number> &Fr = context.get_elem_residual(_flow_vars.u_var()); // R_{r}
    libMesh::DenseSubVector<libMesh::Number> &Fz = context.get_elem_residual(_flow_vars.v_var()); // R_{z}

    // Get Jacobians
    libMesh::DenseSubMatrix<libMesh::Number> &KrT = context.get_elem_jacobian(_flow_vars.u_var(), _temp_vars.T_var()); // R_{r},{T}
    libMesh::DenseSubMatrix<libMesh::Number> &KzT = context.get_elem_jacobian(_flow_vars.v_var(), _temp_vars.T_var()); // R_{z},{T}

    // Now we will build the element Jacobian and residual.
    // Constructing the residual requires the solution and its
    // gradient from the previous timestep.  This must be
    // calculated at each quadrature point by summing the
    // solution degree-of-freedom values by the appropriate
    // weight functions.
    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
	const libMesh::Number r = u_qpoint[qp](0);

	// Compute the solution & its gradient at the old Newton iterate.
	libMesh::Number T;
	T = context.interior_value(_temp_vars.T_var(), qp);

	// First, an i-loop over the velocity degrees of freedom.
	// We know that n_u_dofs == n_v_dofs so we can compute contributions
	// for both at the same time.
	for (unsigned int i=0; i != n_u_dofs; i++)
	  {
	    Fr(i) += -_rho*_beta_T*(T - _T_ref)*_g(0)*vel_phi[i][qp]*r*JxW[qp];
	    Fz(i) += -_rho*_beta_T*(T - _T_ref)*_g(1)*vel_phi[i][qp]*r*JxW[qp];

	    if (compute_jacobian && context.get_elem_solution_derivative())
	      {
		for (unsigned int j=0; j != n_T_dofs; j++)
		  {
		    const libMesh::Number val =
                      -_rho*_beta_T*vel_phi[i][qp]*T_phi[j][qp]*r*JxW[qp]
                      * context.get_elem_solution_derivative();
		    KrT(i,j) += val*_g(0);
		    KzT(i,j) += val*_g(1);
		  } // End j dof loop
	      } // End compute_jacobian check

	  } // End i dof loop
      } // End quadrature loop

#ifdef GRINS_USE_GRVY_TIMERS
    this->_timer->EndTimer("AxisymmetricBoussinesqBuoyancy::element_time_derivative");
#endif

    return;
  }
开发者ID:gdmcbain,项目名称:grins,代码行数:81,代码来源:axisym_boussinesq_buoyancy.C


注:本文中的AssemblyContext::get_dof_indices方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。