本文整理汇总了C++中AssemblyContext::interior_rate方法的典型用法代码示例。如果您正苦于以下问题:C++ AssemblyContext::interior_rate方法的具体用法?C++ AssemblyContext::interior_rate怎么用?C++ AssemblyContext::interior_rate使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类AssemblyContext
的用法示例。
在下文中一共展示了AssemblyContext::interior_rate方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: gas_evaluator
void ReactingLowMachNavierStokesStabilizationBase<Mixture,Evaluator>::compute_res_transient( AssemblyContext& context,
unsigned int qp,
libMesh::Real& RP_t,
libMesh::RealGradient& RM_t,
libMesh::Real& RE_t,
std::vector<libMesh::Real>& Rs_t )
{
libMesh::Real T = context.interior_value( this->_temp_vars.T(), qp );
std::vector<libMesh::Real> ws(this->n_species());
for(unsigned int s=0; s < this->_n_species; s++ )
{
ws[s] = context.interior_value(this->_species_vars.species(s), qp);
}
Evaluator gas_evaluator( this->_gas_mixture );
const libMesh::Real R_mix = gas_evaluator.R_mix(ws);
const libMesh::Real p0 = this->get_p0_transient(context,qp);
const libMesh::Real rho = this->rho(T, p0, R_mix);
const libMesh::Real cp = gas_evaluator.cp(T,p0,ws);
const libMesh::Real M = gas_evaluator.M_mix( ws );
// M_dot = -M^2 \sum_s w_dot[s]/Ms
libMesh::Real M_dot = 0.0;
std::vector<libMesh::Real> ws_dot(this->n_species());
for(unsigned int s=0; s < this->n_species(); s++)
{
context.interior_rate(this->_species_vars.species(s), qp, ws_dot[s]);
// Start accumulating M_dot
M_dot += ws_dot[s]/this->_gas_mixture.M(s);
}
libMesh::Real M_dot_over_M = M_dot*(-M);
libMesh::RealGradient u_dot;
context.interior_rate(this->_flow_vars.u(), qp, u_dot(0));
context.interior_rate(this->_flow_vars.v(), qp, u_dot(1));
if(this->mesh_dim(context) == 3)
context.interior_rate(this->_flow_vars.w(), qp, u_dot(2));
libMesh::Real T_dot;
context.interior_rate(this->_temp_vars.T(), qp, T_dot);
RP_t = -T_dot/T + M_dot_over_M;
RM_t = rho*u_dot;
RE_t = rho*cp*T_dot;
for(unsigned int s=0; s < this->n_species(); s++)
{
Rs_t[s] = rho*ws_dot[s];
}
return;
}
示例2: F
void HeatConduction<K>::mass_residual( bool compute_jacobian,
AssemblyContext& context,
CachedValues& /*cache*/ )
{
// First we get some references to cell-specific data that
// will be used to assemble the linear system.
// Element Jacobian * quadrature weights for interior integration
const std::vector<libMesh::Real> &JxW =
context.get_element_fe(_temp_vars.T_var())->get_JxW();
// The shape functions at interior quadrature points.
const std::vector<std::vector<libMesh::Real> >& phi =
context.get_element_fe(_temp_vars.T_var())->get_phi();
// The number of local degrees of freedom in each variable
const unsigned int n_T_dofs = context.get_dof_indices(_temp_vars.T_var()).size();
// The subvectors and submatrices we need to fill:
libMesh::DenseSubVector<libMesh::Real> &F =
context.get_elem_residual(_temp_vars.T_var());
libMesh::DenseSubMatrix<libMesh::Real> &M =
context.get_elem_jacobian(_temp_vars.T_var(), _temp_vars.T_var());
unsigned int n_qpoints = context.get_element_qrule().n_points();
for (unsigned int qp = 0; qp != n_qpoints; ++qp)
{
// For the mass residual, we need to be a little careful.
// The time integrator is handling the time-discretization
// for us so we need to supply M(u_fixed)*u' for the residual.
// u_fixed will be given by the fixed_interior_value function
// while u' will be given by the interior_rate function.
libMesh::Real T_dot;
context.interior_rate(_temp_vars.T_var(), qp, T_dot);
for (unsigned int i = 0; i != n_T_dofs; ++i)
{
F(i) -= JxW[qp]*(_rho*_Cp*T_dot*phi[i][qp] );
if( compute_jacobian )
{
for (unsigned int j=0; j != n_T_dofs; j++)
{
// We're assuming rho, cp are constant w.r.t. T here.
M(i,j) -=
context.get_elem_solution_rate_derivative()
* JxW[qp]*_rho*_Cp*phi[j][qp]*phi[i][qp] ;
}
}// End of check on Jacobian
} // End of element dof loop
} // End of the quadrature point loop
return;
}
示例3: compute_res_energy_transient
libMesh::Real HeatTransferStabilizationHelper::compute_res_energy_transient( AssemblyContext& context,
unsigned int qp,
const libMesh::Real rho,
const libMesh::Real Cp ) const
{
libMesh::Real T_dot;
context.interior_rate(this->_temp_vars.T(), qp, T_dot);
return rho*Cp*T_dot;
}
示例4:
void HeatTransferStabilizationHelper::compute_res_energy_transient_and_derivs
( AssemblyContext& context,
unsigned int qp,
const libMesh::Real rho,
const libMesh::Real Cp,
libMesh::Real &res,
libMesh::Real &d_res_dTdot
) const
{
libMesh::Real T_dot;
context.interior_rate(this->_temp_vars.T(), qp, T_dot);
res = rho*Cp*T_dot;
d_res_dTdot = rho*Cp;
}