本文整理汇总了C++中AssemblyContext::get_side_fe方法的典型用法代码示例。如果您正苦于以下问题:C++ AssemblyContext::get_side_fe方法的具体用法?C++ AssemblyContext::get_side_fe怎么用?C++ AssemblyContext::get_side_fe使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类AssemblyContext
的用法示例。
在下文中一共展示了AssemblyContext::get_side_fe方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: init_context
void PracticeCDRinv::init_context( AssemblyContext& context){
context.get_element_fe(_c_var)->get_JxW();
context.get_element_fe(_c_var)->get_phi();
context.get_element_fe(_c_var)->get_dphi();
context.get_element_fe(_c_var)->get_xyz();
context.get_side_fe(_c_var)->get_JxW();
context.get_side_fe(_c_var)->get_phi();
context.get_side_fe(_c_var)->get_dphi();
context.get_side_fe(_c_var)->get_xyz();
return;
}
示例2: apply_neumann_normal
void BoundaryConditions::apply_neumann_normal( AssemblyContext& context,
const VariableIndex var,
const libMesh::Real sign,
const FEShape& value ) const
{
libMesh::FEGenericBase<FEShape>* side_fe = NULL;
context.get_side_fe( var, side_fe );
// The number of local degrees of freedom in each variable.
const unsigned int n_var_dofs = context.get_dof_indices(var).size();
// Element Jacobian * quadrature weight for side integration.
const std::vector<libMesh::Real> &JxW_side = side_fe->get_JxW();
// The var shape functions at side quadrature points.
const std::vector<std::vector<FEShape> >& var_phi_side = side_fe->get_phi();
libMesh::DenseSubVector<libMesh::Number> &F_var = context.get_elem_residual(var); // residual
unsigned int n_qpoints = context.get_side_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
for (unsigned int i=0; i != n_var_dofs; i++)
{
F_var(i) += sign*value*var_phi_side[i][qp]*JxW_side[qp];
}
}
return;
}
示例3:
void HeatConduction<K>::init_context( AssemblyContext& context )
{
// We should prerequest all the data
// we will need to build the linear system
// or evaluate a quantity of interest.
context.get_element_fe(_temp_vars.T_var())->get_JxW();
context.get_element_fe(_temp_vars.T_var())->get_phi();
context.get_element_fe(_temp_vars.T_var())->get_dphi();
context.get_element_fe(_temp_vars.T_var())->get_xyz();
context.get_side_fe(_temp_vars.T_var())->get_JxW();
context.get_side_fe(_temp_vars.T_var())->get_phi();
context.get_side_fe(_temp_vars.T_var())->get_dphi();
context.get_side_fe(_temp_vars.T_var())->get_xyz();
return;
}
示例4:
void AxisymmetricHeatTransfer<Conductivity>::init_context( AssemblyContext& context )
{
// We should prerequest all the data
// we will need to build the linear system
// or evaluate a quantity of interest.
context.get_element_fe(_T_var)->get_JxW();
context.get_element_fe(_T_var)->get_phi();
context.get_element_fe(_T_var)->get_dphi();
context.get_element_fe(_T_var)->get_xyz();
context.get_side_fe(_T_var)->get_JxW();
context.get_side_fe(_T_var)->get_phi();
context.get_side_fe(_T_var)->get_dphi();
context.get_side_fe(_T_var)->get_xyz();
// _u_var is registered so can we assume things related to _u_var
// are available in FEMContext
return;
}
示例5:
void IncompressibleNavierStokesBase<Mu>::init_context( AssemblyContext& context )
{
// We should prerequest all the data
// we will need to build the linear system
// or evaluate a quantity of interest.
context.get_element_fe(_flow_vars.u_var())->get_JxW();
context.get_element_fe(_flow_vars.u_var())->get_phi();
context.get_element_fe(_flow_vars.u_var())->get_dphi();
context.get_element_fe(_flow_vars.u_var())->get_xyz();
context.get_element_fe(_flow_vars.p_var())->get_phi();
context.get_element_fe(_flow_vars.p_var())->get_xyz();
context.get_side_fe(_flow_vars.u_var())->get_JxW();
context.get_side_fe(_flow_vars.u_var())->get_phi();
context.get_side_fe(_flow_vars.u_var())->get_dphi();
context.get_side_fe(_flow_vars.u_var())->get_xyz();
return;
}
示例6:
void LowMachNavierStokes<Mu,SH,TC>::init_context( AssemblyContext& context )
{
// First call base class
LowMachNavierStokesBase<Mu,SH,TC>::init_context(context);
// We also need the side shape functions, etc.
context.get_side_fe(this->_u_var)->get_JxW();
context.get_side_fe(this->_u_var)->get_phi();
context.get_side_fe(this->_u_var)->get_dphi();
context.get_side_fe(this->_u_var)->get_xyz();
context.get_side_fe(this->_T_var)->get_JxW();
context.get_side_fe(this->_T_var)->get_phi();
context.get_side_fe(this->_T_var)->get_dphi();
context.get_side_fe(this->_T_var)->get_xyz();
return;
}
示例7:
bool GasRecombinationCatalyticWall<Chemistry>::eval_flux( bool compute_jacobian,
AssemblyContext& context,
libMesh::Real sign,
bool is_axisymmetric )
{
libMesh::FEGenericBase<libMesh::Real>* side_fe = NULL;
context.get_side_fe( _reactant_var_idx, side_fe );
// The number of local degrees of freedom in each variable.
const unsigned int n_var_dofs = context.get_dof_indices(_reactant_var_idx).size();
libmesh_assert_equal_to( n_var_dofs, context.get_dof_indices(_product_var_idx).size() );
// Element Jacobian * quadrature weight for side integration.
const std::vector<libMesh::Real> &JxW_side = side_fe->get_JxW();
// The var shape functions at side quadrature points.
const std::vector<std::vector<libMesh::Real> >& var_phi_side = side_fe->get_phi();
// Physical location of the quadrature points
const std::vector<libMesh::Point>& var_qpoint = side_fe->get_xyz();
// reactant residual
libMesh::DenseSubVector<libMesh::Number> &F_r_var = context.get_elem_residual(_reactant_var_idx);
// product residual
libMesh::DenseSubVector<libMesh::Number> &F_p_var = context.get_elem_residual(_product_var_idx);
unsigned int n_qpoints = context.get_side_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
libMesh::Real jac = JxW_side[qp];
if(is_axisymmetric)
{
const libMesh::Number r = var_qpoint[qp](0);
jac *= r;
}
std::vector<libMesh::Real> mass_fractions(this->_chem_ptr->n_species());
for( unsigned int s = 0; s < this->_chem_ptr->n_species(); s++ )
mass_fractions[s] = context.side_value(this->_species_vars[s], qp);
libMesh::Real Y_r = mass_fractions[this->_reactant_species_idx];
libMesh::Real T = context.side_value(this->_T_var, qp);
libMesh::Real R_mix = this->_chem_ptr->R_mix(mass_fractions);
libMesh::Real rho = this->rho( T, this->_p0, R_mix );
const libMesh::Real r_value = this->compute_reactant_mass_flux(rho, Y_r, T);
const libMesh::Real p_value = -r_value;
for (unsigned int i=0; i != n_var_dofs; i++)
{
F_r_var(i) += sign*r_value*var_phi_side[i][qp]*jac;
F_p_var(i) += sign*p_value*var_phi_side[i][qp]*jac;
if( compute_jacobian )
libmesh_not_implemented();
}
}
// We're not computing the Jacobian yet
return false;
}
示例8: apply_neumann_axisymmetric
void BoundaryConditions::apply_neumann_axisymmetric( AssemblyContext& context,
const CachedValues& cache,
const bool request_jacobian,
const VariableIndex var,
const libMesh::Real sign,
SharedPtr<NeumannFuncObj> neumann_func ) const
{
libMesh::FEGenericBase<libMesh::Real>* side_fe = NULL;
context.get_side_fe( var, side_fe );
// The number of local degrees of freedom
const unsigned int n_var_dofs = context.get_dof_indices(var).size();
// Element Jacobian * quadrature weight for side integration.
const std::vector<libMesh::Real> &JxW_side = side_fe->get_JxW();
// The var shape functions at side quadrature points.
const std::vector<std::vector<libMesh::Real> >& var_phi_side =
side_fe->get_phi();
// Physical location of the quadrature points
const std::vector<libMesh::Point>& var_qpoint =
side_fe->get_xyz();
const std::vector<libMesh::Point> &normals = side_fe->get_normals();
libMesh::DenseSubVector<libMesh::Number> &F_var = context.get_elem_residual(var); // residual
libMesh::DenseSubMatrix<libMesh::Number> &K_var = context.get_elem_jacobian(var,var); // jacobian
unsigned int n_qpoints = context.get_side_qrule().n_points();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
const libMesh::Point bc_value = neumann_func->value( context, cache, qp );
libMesh::Point jac_value;
if (request_jacobian)
{
jac_value = neumann_func->derivative( context, cache, qp );
}
const libMesh::Number r = var_qpoint[qp](0);
for (unsigned int i=0; i != n_var_dofs; i++)
{
F_var(i) += sign*r*JxW_side[qp]*bc_value*normals[qp]*var_phi_side[i][qp];
if (request_jacobian)
{
for (unsigned int j=0; j != n_var_dofs; j++)
{
K_var(i,j) += sign*r*JxW_side[qp]*jac_value*normals[qp]*
var_phi_side[i][qp]*var_phi_side[j][qp];
}
}
}
} // End quadrature loop
// Now must take care of the case that the boundary condition depends on variables
// other than var.
std::vector<VariableIndex> other_jac_vars = neumann_func->get_other_jac_vars();
if( (other_jac_vars.size() > 0) && request_jacobian )
{
for( std::vector<VariableIndex>::const_iterator var2 = other_jac_vars.begin();
var2 != other_jac_vars.end();
var2++ )
{
libMesh::FEGenericBase<libMesh::Real>* side_fe2 = NULL;
context.get_side_fe( *var2, side_fe2 );
libMesh::DenseSubMatrix<libMesh::Number> &K_var2 = context.get_elem_jacobian(var,*var2); // jacobian
const unsigned int n_var2_dofs = context.get_dof_indices(*var2).size();
const std::vector<std::vector<libMesh::Real> >& var2_phi_side =
side_fe2->get_phi();
for (unsigned int qp=0; qp != n_qpoints; qp++)
{
const libMesh::Number r = var_qpoint[qp](0);
const libMesh::Point jac_value = neumann_func->derivative( context, cache, qp, *var2 );
for (unsigned int i=0; i != n_var_dofs; i++)
{
for (unsigned int j=0; j != n_var2_dofs; j++)
{
K_var2(i,j) += sign*r*JxW_side[qp]*jac_value*normals[qp]*
var_phi_side[i][qp]*var2_phi_side[j][qp];
}
}
}
} // End loop over auxillary Jacobian variables
}
return;
}