Augment 接受模型對象和數據集,並添加有關數據集中每個觀察值的信息。最常見的是,這包括 .fitted
列中的預測值、.resid
列中的殘差以及 .se.fit
列中擬合值的標準誤差。新列始終以 .
前綴開頭,以避免覆蓋原始數據集中的列。
用戶可以通過 data
參數或 newdata
參數傳遞數據以進行增強。如果用戶將數據傳遞給 data
參數,則它必須正是用於擬合模型對象的數據。將數據集傳遞給 newdata
以擴充模型擬合期間未使用的數據。這仍然要求至少存在用於擬合模型的所有預測變量列。如果用於擬合模型的原始結果變量未包含在 newdata
中,則輸出中不會包含 .resid
列。
根據是否給出 data
或 newdata
,增強的行為通常會有所不同。這是因為通常存在與訓練觀察(例如影響或相關)測量相關的信息,而這些信息對於新觀察沒有有意義的定義。
為了方便起見,許多增強方法提供默認的 data
參數,以便 augment(fit)
將返回增強的訓練數據。在這些情況下,augment 嘗試根據模型對象重建原始數據,並取得了不同程度的成功。
增強數據集始終以 tibble::tibble 形式返回,其行數與傳遞的數據集相同。這意味著傳遞的數據必須可強製轉換為 tibble。如果預測變量將模型作為協變量矩陣的一部分輸入,例如當模型公式使用 splines::ns()
、 stats::poly()
或 survival::Surv()
時,它會表示為矩陣列。
我們正在定義適合各種 na.action
參數的模型的行為,但目前不保證數據丟失時的行為。
用法
# S3 method for mfx
augment(
x,
data = model.frame(x$fit),
newdata = NULL,
type.predict = c("link", "response", "terms"),
type.residuals = c("deviance", "pearson"),
se_fit = FALSE,
...
)
# S3 method for logitmfx
augment(
x,
data = model.frame(x$fit),
newdata = NULL,
type.predict = c("link", "response", "terms"),
type.residuals = c("deviance", "pearson"),
se_fit = FALSE,
...
)
# S3 method for negbinmfx
augment(
x,
data = model.frame(x$fit),
newdata = NULL,
type.predict = c("link", "response", "terms"),
type.residuals = c("deviance", "pearson"),
se_fit = FALSE,
...
)
# S3 method for poissonmfx
augment(
x,
data = model.frame(x$fit),
newdata = NULL,
type.predict = c("link", "response", "terms"),
type.residuals = c("deviance", "pearson"),
se_fit = FALSE,
...
)
# S3 method for probitmfx
augment(
x,
data = model.frame(x$fit),
newdata = NULL,
type.predict = c("link", "response", "terms"),
type.residuals = c("deviance", "pearson"),
se_fit = FALSE,
...
)
參數
- x
-
logitmfx
、negbinmfx
、poissonmfx
或probitmfx
對象。 (請注意,betamfx
對象接收自己的一組整理器。) - data
-
base::data.frame 或
tibble::tibble()
包含用於生成對象x
的原始數據。默認為stats::model.frame(x)
,以便augment(my_fit)
返回增強的原始數據。不要將新數據傳遞給data
參數。增強將報告傳遞給data
參數的數據的影響和烹飪距離等信息。這些度量僅針對原始訓練數據定義。 - newdata
-
base::data.frame()
或tibble::tibble()
包含用於創建x
的所有原始預測變量。默認為NULL
,表示沒有任何內容傳遞給newdata
。如果指定了newdata
,則data
參數將被忽略。 - type.predict
-
傳遞給
stats::predict.glm()
type
參數。默認為"link"
。 - type.residuals
-
傳遞給
stats::residuals.glm()
和stats::rstandard.glm()
type
參數。默認為"deviance"
。 - se_fit
-
邏輯指示是否應將
.se.fit
列添加到增強輸出中。對於某些模型,此計算可能有點耗時。默認為FALSE
。 - ...
-
附加參數。不曾用過。僅需要匹配通用簽名。注意:拚寫錯誤的參數將被吸收到
...
中,並被忽略。如果拚寫錯誤的參數有默認值,則將使用默認值。例如,如果您傳遞conf.lvel = 0.9
,所有計算將使用conf.level = 0.95
進行。這裏有兩個異常:
細節
此通用增強方法包裝 augment.glm()
,以獲取 mfx
包中的適用對象。
也可以看看
augment.glm()
, mfx::logitmfx()
, mfx::negbinmfx()
, mfx::poissonmfx()
, mfx::probitmfx()
其他 mfx 整理器:augment.betamfx()
、glance.betamfx()
、glance.mfx()
、tidy.betamfx()
、tidy.mfx()
值
帶有列的 tibble::tibble()
:
- .cooksd
-
廚師距離。
- .fitted
-
擬合值或預測值。
- .hat
-
帽子矩陣的對角線。
- .resid
-
觀察值和擬合值之間的差異。
- .se.fit
-
擬合值的標準誤差。
- .sigma
-
從模型中刪除相應觀測值時的估計殘差標準差。
- .std.resid
-
標準化殘差。
例子
# load libraries for models and data
library(mfx)
# get the marginal effects from a logit regression
mod_logmfx <- logitmfx(am ~ cyl + hp + wt, atmean = TRUE, data = mtcars)
tidy(mod_logmfx, conf.int = TRUE)
#> # A tibble: 3 × 8
#> term atmean estimate std.error statistic p.value conf.low conf.high
#> <chr> <lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 cyl TRUE 0.0538 0.113 0.475 0.635 -0.178 0.286
#> 2 hp TRUE 0.00359 0.00290 1.24 0.216 -0.00236 0.00954
#> 3 wt TRUE -1.01 0.668 -1.51 0.131 -2.38 0.359
# compare with the naive model coefficients of the same logit call
tidy(
glm(am ~ cyl + hp + wt, family = binomial, data = mtcars),
conf.int = TRUE
)
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> # A tibble: 4 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 19.7 8.12 2.43 0.0152 8.56 44.3
#> 2 cyl 0.488 1.07 0.455 0.649 -1.53 3.12
#> 3 hp 0.0326 0.0189 1.73 0.0840 0.00332 0.0884
#> 4 wt -9.15 4.15 -2.20 0.0276 -21.4 -3.48
augment(mod_logmfx)
#> # A tibble: 32 × 11
#> .rownames am cyl hp wt .fitted .resid .hat .sigma .cooksd
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mazda RX4 1 6 110 2.62 2.24 0.449 0.278 0.595 1.42e-2
#> 2 Mazda RX… 1 6 110 2.88 -0.0912 1.22 0.352 0.529 2.30e-1
#> 3 Datsun 7… 1 4 93 2.32 3.46 0.249 0.0960 0.602 9.26e-4
#> 4 Hornet 4… 0 6 110 3.22 -3.20 -0.282 0.0945 0.601 1.17e-3
#> 5 Hornet S… 0 8 175 3.44 -2.17 -0.466 0.220 0.595 1.03e-2
#> 6 Valiant 0 6 105 3.46 -5.61 -0.0856 0.0221 0.604 2.12e-5
#> 7 Duster 3… 0 8 245 3.57 -1.07 -0.766 0.337 0.576 6.55e-2
#> 8 Merc 240D 0 4 62 3.19 -5.51 -0.0897 0.0376 0.603 4.10e-5
#> 9 Merc 230 0 4 95 3.15 -4.07 -0.184 0.122 0.603 6.76e-4
#> 10 Merc 280 0 6 123 3.44 -4.84 -0.126 0.0375 0.603 8.02e-5
#> # ℹ 22 more rows
#> # ℹ 1 more variable: .std.resid <dbl>
glance(mod_logmfx)
#> # A tibble: 1 × 8
#> null.deviance df.null logLik AIC BIC deviance df.residual nobs
#> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <int> <int>
#> 1 43.2 31 -4.92 17.8 23.7 9.84 28 32
# another example, this time using probit regression
mod_probmfx <- probitmfx(am ~ cyl + hp + wt, atmean = TRUE, data = mtcars)
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
tidy(mod_probmfx, conf.int = TRUE)
#> # A tibble: 3 × 8
#> term atmean estimate std.error statistic p.value conf.low conf.high
#> <chr> <lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 cyl TRUE 0.0616 0.112 0.548 0.583 -0.169 0.292
#> 2 hp TRUE 0.00383 0.00282 1.36 0.174 -0.00194 0.00960
#> 3 wt TRUE -1.06 0.594 -1.78 0.0753 -2.27 0.160
augment(mod_probmfx)
#> # A tibble: 32 × 11
#> .rownames am cyl hp wt .fitted .resid .hat .sigma .cooksd
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mazda RX4 1 6 110 2.62 1.21 0.490 0.308 0.585 2.05e-2
#> 2 Mazda RX… 1 6 110 2.88 -0.129 1.27 0.249 0.526 1.36e-1
#> 3 Datsun 7… 1 4 93 2.32 1.85 0.256 0.134 0.594 1.48e-3
#> 4 Hornet 4… 0 6 110 3.22 -1.92 -0.237 0.116 0.594 1.05e-3
#> 5 Hornet S… 0 8 175 3.44 -1.25 -0.474 0.236 0.587 1.20e-2
#> 6 Valiant 0 6 105 3.46 -3.30 -0.0312 0.0111 0.596 1.39e-6
#> 7 Duster 3… 0 8 245 3.57 -0.595 -0.804 0.285 0.567 5.32e-2
#> 8 Merc 240D 0 4 62 3.19 -3.31 -0.0304 0.0179 0.596 2.15e-6
#> 9 Merc 230 0 4 95 3.15 -2.47 -0.116 0.130 0.596 2.89e-4
#> 10 Merc 280 0 6 123 3.44 -2.85 -0.0662 0.0315 0.596 1.84e-5
#> # ℹ 22 more rows
#> # ℹ 1 more variable: .std.resid <dbl>
glance(mod_probmfx)
#> # A tibble: 1 × 8
#> null.deviance df.null logLik AIC BIC deviance df.residual nobs
#> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <int> <int>
#> 1 43.2 31 -4.80 17.6 23.5 9.59 28 32
相關用法
- R broom augment.mlogit 使用來自 mlogit 對象的信息增強數據
- R broom augment.mjoint 使用來自 mjoint 對象的信息增強數據
- R broom augment.betamfx 使用來自 betamfx 對象的信息增強數據
- R broom augment.robustbase.glmrob 使用來自 glmrob 對象的信息增強數據
- R broom augment.rlm 使用來自 rlm 對象的信息增強數據
- R broom augment.htest 使用來自(n)個 htest 對象的信息來增強數據
- R broom augment.clm 使用來自 clm 對象的信息增強數據
- R broom augment.speedlm 使用來自 speedlm 對象的信息增強數據
- R broom augment.felm 使用來自 (n) 個 felm 對象的信息來增強數據
- R broom augment.smooth.spline 整理一個(n)smooth.spline對象
- R broom augment.drc 使用來自 a(n) drc 對象的信息增強數據
- R broom augment.decomposed.ts 使用來自 decomposed.ts 對象的信息增強數據
- R broom augment.poLCA 使用來自 poLCA 對象的信息增強數據
- R broom augment.lm 使用來自 (n) lm 對象的信息增強數據
- R broom augment.rqs 使用來自 (n) 個 rqs 對象的信息來增強數據
- R broom augment.polr 使用來自 (n) 個 polr 對象的信息增強數據
- R broom augment.plm 使用來自 plm 對象的信息增強數據
- R broom augment.nls 使用來自 nls 對象的信息增強數據
- R broom augment.gam 使用來自 gam 對象的信息增強數據
- R broom augment.fixest 使用來自(n)個最固定對象的信息來增強數據
- R broom augment.survreg 使用來自 survreg 對象的信息增強數據
- R broom augment.rq 使用來自 a(n) rq 對象的信息增強數據
- R broom augment.Mclust 使用來自 Mclust 對象的信息增強數據
- R broom augment.nlrq 整理 a(n) nlrq 對象
- R broom augment.robustbase.lmrob 使用來自 lmrob 對象的信息增強數據
注:本文由純淨天空篩選整理自等大神的英文原創作品 Augment data with information from a(n) mfx object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。