Tidy 總結了有關模型組件的信息。模型組件可能是回歸中的單個項、單個假設、聚類或類。 tidy 所認為的模型組件的確切含義因模型而異,但通常是不言而喻的。如果模型具有多種不同類型的組件,您將需要指定要返回哪些組件。
參數
- x
-
stats::loess()
返回的loess
對象。 - data
-
base::data.frame 或
tibble::tibble()
包含用於生成對象x
的原始數據。默認為stats::model.frame(x)
,以便augment(my_fit)
返回增強的原始數據。不要將新數據傳遞給data
參數。增強將報告傳遞給data
參數的數據的影響和烹飪距離等信息。這些度量僅針對原始訓練數據定義。 - newdata
-
base::data.frame()
或tibble::tibble()
包含用於創建x
的所有原始預測變量。默認為NULL
,表示沒有任何內容傳遞給newdata
。如果指定了newdata
,則data
參數將被忽略。 - se_fit
-
邏輯指示是否應將
.se.fit
列添加到增強輸出中。對於某些模型,此計算可能有點耗時。默認為FALSE
。 - ...
-
附加參數。不曾用過。僅需要匹配通用簽名。注意:拚寫錯誤的參數將被吸收到
...
中,並被忽略。如果拚寫錯誤的參數有默認值,則將使用默認值。例如,如果您傳遞conf.lvel = 0.9
,所有計算將使用conf.level = 0.95
進行。這裏有兩個異常:
細節
當使用 na.action = "na.omit"
執行建模時(這是典型的默認設置),初始數據中帶有 NA 的行將完全從增強 DataFrame 中省略。當使用 na.action = "na.exclude"
執行建模時,應提供原始數據作為第二個參數,此時增強數據將包含這些行(通常用 NA 代替新列)。如果未向 augment()
和 na.action = "na.exclude"
提供原始數據,則會引發警告並刪除不完整的行。
請注意,默認情況下, loess
對象不會預測訓練數據定義的邊界超立方體之外的數據,除非原始 loess
對象適合 control = loess.control(surface = \"direct\"))
。有關詳細信息,請參閱stats::predict.loess()
。
例子
lo <- loess(
mpg ~ hp + wt,
mtcars,
control = loess.control(surface = "direct")
)
augment(lo)
#> # A tibble: 32 × 6
#> .rownames mpg hp wt .fitted .resid
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mazda RX4 21 110 2.62 21.4 -0.435
#> 2 Mazda RX4 Wag 21 110 2.88 20.9 0.0976
#> 3 Datsun 710 22.8 93 2.32 24.7 -1.88
#> 4 Hornet 4 Drive 21.4 110 3.22 19.6 1.76
#> 5 Hornet Sportabout 18.7 175 3.44 16.7 2.02
#> 6 Valiant 18.1 105 3.46 18.9 -0.833
#> 7 Duster 360 14.3 245 3.57 14.9 -0.641
#> 8 Merc 240D 24.4 62 3.19 25.1 -0.695
#> 9 Merc 230 22.8 95 3.15 21.4 1.43
#> 10 Merc 280 19.2 123 3.44 18.4 0.801
#> # ℹ 22 more rows
# with all columns of original data
augment(lo, mtcars)
#> # A tibble: 32 × 14
#> .rownames mpg cyl disp hp drat wt qsec vs am gear
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4
#> 2 Mazda RX4 … 21 6 160 110 3.9 2.88 17.0 0 1 4
#> 3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4
#> 4 Hornet 4 D… 21.4 6 258 110 3.08 3.22 19.4 1 0 3
#> 5 Hornet Spo… 18.7 8 360 175 3.15 3.44 17.0 0 0 3
#> 6 Valiant 18.1 6 225 105 2.76 3.46 20.2 1 0 3
#> 7 Duster 360 14.3 8 360 245 3.21 3.57 15.8 0 0 3
#> 8 Merc 240D 24.4 4 147. 62 3.69 3.19 20 1 0 4
#> 9 Merc 230 22.8 4 141. 95 3.92 3.15 22.9 1 0 4
#> 10 Merc 280 19.2 6 168. 123 3.92 3.44 18.3 1 0 4
#> # ℹ 22 more rows
#> # ℹ 3 more variables: carb <dbl>, .fitted <dbl>, .resid <dbl>
# with a new dataset
augment(lo, newdata = head(mtcars))
#> # A tibble: 6 × 14
#> .rownames mpg cyl disp hp drat wt qsec vs am gear
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4
#> 2 Mazda RX4 W… 21 6 160 110 3.9 2.88 17.0 0 1 4
#> 3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4
#> 4 Hornet 4 Dr… 21.4 6 258 110 3.08 3.22 19.4 1 0 3
#> 5 Hornet Spor… 18.7 8 360 175 3.15 3.44 17.0 0 0 3
#> 6 Valiant 18.1 6 225 105 2.76 3.46 20.2 1 0 3
#> # ℹ 3 more variables: carb <dbl>, .fitted <dbl>, .resid <dbl>
相關用法
- R broom augment.lm 使用來自 (n) lm 對象的信息增強數據
- R broom augment.lmRob 使用來自 lmRob 對象的信息增強數據
- R broom augment.betamfx 使用來自 betamfx 對象的信息增強數據
- R broom augment.robustbase.glmrob 使用來自 glmrob 對象的信息增強數據
- R broom augment.rlm 使用來自 rlm 對象的信息增強數據
- R broom augment.htest 使用來自(n)個 htest 對象的信息來增強數據
- R broom augment.clm 使用來自 clm 對象的信息增強數據
- R broom augment.speedlm 使用來自 speedlm 對象的信息增強數據
- R broom augment.felm 使用來自 (n) 個 felm 對象的信息來增強數據
- R broom augment.smooth.spline 整理一個(n)smooth.spline對象
- R broom augment.drc 使用來自 a(n) drc 對象的信息增強數據
- R broom augment.decomposed.ts 使用來自 decomposed.ts 對象的信息增強數據
- R broom augment.poLCA 使用來自 poLCA 對象的信息增強數據
- R broom augment.rqs 使用來自 (n) 個 rqs 對象的信息來增強數據
- R broom augment.polr 使用來自 (n) 個 polr 對象的信息增強數據
- R broom augment.plm 使用來自 plm 對象的信息增強數據
- R broom augment.nls 使用來自 nls 對象的信息增強數據
- R broom augment.gam 使用來自 gam 對象的信息增強數據
- R broom augment.fixest 使用來自(n)個最固定對象的信息來增強數據
- R broom augment.survreg 使用來自 survreg 對象的信息增強數據
- R broom augment.rq 使用來自 a(n) rq 對象的信息增強數據
- R broom augment.Mclust 使用來自 Mclust 對象的信息增強數據
- R broom augment.nlrq 整理 a(n) nlrq 對象
- R broom augment.robustbase.lmrob 使用來自 lmrob 對象的信息增強數據
- R broom augment.mlogit 使用來自 mlogit 對象的信息增強數據
注:本文由純淨天空篩選整理自等大神的英文原創作品 Tidy a(n) loess object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。