本文整理匯總了Python中sklearn.preprocessing.StandardScaler.split方法的典型用法代碼示例。如果您正苦於以下問題:Python StandardScaler.split方法的具體用法?Python StandardScaler.split怎麽用?Python StandardScaler.split使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.preprocessing.StandardScaler
的用法示例。
在下文中一共展示了StandardScaler.split方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: StratifiedKFold
# 需要導入模塊: from sklearn.preprocessing import StandardScaler [as 別名]
# 或者: from sklearn.preprocessing.StandardScaler import split [as 別名]
ref = pd.concat([data[cont_vars + cat_vars + ['target']], etd[cont_vars + cat_vars]])
ref[cont_vars] = ss.fit_transform(ref[cont_vars].values)
data = ref.iloc[:200000]
etd = ref.iloc[200000:]
data[target] = data[target].astype('int')
del ref; gc.collect()
fold_seed = 42
ss = StratifiedKFold(n_splits=10, random_state=fold_seed, shuffle=True)
folds = []
for num, (train,test) in enumerate(ss.split(data[target], data[target])):
folds.append([train, test])
layers=[32]
ps=0.2
emb_drop=0.08
cont_emb=(50,10)
cont_emb_notu=(50,10)
emb_szs = [[6,12]]
use_bn = True
joined=False
# Code modified to sub with one seed
seeds = [42] #, 1337, 666]
results = []