當前位置: 首頁>>代碼示例>>Python>>正文


Python StandardScaler.predict方法代碼示例

本文整理匯總了Python中sklearn.preprocessing.StandardScaler.predict方法的典型用法代碼示例。如果您正苦於以下問題:Python StandardScaler.predict方法的具體用法?Python StandardScaler.predict怎麽用?Python StandardScaler.predict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.preprocessing.StandardScaler的用法示例。


在下文中一共展示了StandardScaler.predict方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: ElasticNet

# 需要導入模塊: from sklearn.preprocessing import StandardScaler [as 別名]
# 或者: from sklearn.preprocessing.StandardScaler import predict [as 別名]
fit = ElasticNet()

params = {
    'l1_ratio': np.linspace(0,1,15), #15 different ratios between 0 and 1. 0 is Ridge, 1 is Lasso
    'alpha': np.linspace(0,10,num=150) #150 different alpha values, alpha of 0 is non-regularized regression
}

gs = GridSearchCV(fit, param_grid=params, verbose = True, cv = 10, scoring = 'mean_absolute_error') #We apply CV 5 times

gs.fit(X_train_01, Y_train) #MAE of -1.635
gs.best_params_, gs.best_score_

##Best criteria is alpha: 0 with l1_ratio: 0, which means just regression with NO regularization
##We use these values to to test on the testing data
fit = ElasticNet(alpha=0,l1_ratio=0).fit(X_train_01, Y_train)
mean_absolute_error(Y_test, fit.predict(X_test_01)) #MAE on testing data is 1.63

###Table with the features and the coefficents
results = [list(df_raw.columns[1:-1].values.T), list(fit.coef_)]
df_results = pd.DataFrame(results).T; df_results.columns = ['Feature Name','Coefficient']
df_results

###Let us plot the true vs predicted values to visualize this result
plt.scatter(Y_test, fit.predict(X_test_01))
plt.xlabel('Actual Defensive Rating'); plt.ylabel('Predicted Defensive Rating')



###Off Rating

##Spliting the data into train and test (67% train)
開發者ID:ysriram1,項目名稱:Exploring-Basket-Ball-Data,代碼行數:33,代碼來源:entire_script.py


注:本文中的sklearn.preprocessing.StandardScaler.predict方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。