當前位置: 首頁>>代碼示例>>Python>>正文


Python LibSVM.set_kernel方法代碼示例

本文整理匯總了Python中shogun.Classifier.LibSVM.set_kernel方法的典型用法代碼示例。如果您正苦於以下問題:Python LibSVM.set_kernel方法的具體用法?Python LibSVM.set_kernel怎麽用?Python LibSVM.set_kernel使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在shogun.Classifier.LibSVM的用法示例。


在下文中一共展示了LibSVM.set_kernel方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: kernel_combined_custom_poly_modular

# 需要導入模塊: from shogun.Classifier import LibSVM [as 別名]
# 或者: from shogun.Classifier.LibSVM import set_kernel [as 別名]
def kernel_combined_custom_poly_modular(fm_train_real = traindat,fm_test_real = testdat,fm_label_twoclass=label_traindat):
    from shogun.Features import CombinedFeatures, RealFeatures, BinaryLabels
    from shogun.Kernel import CombinedKernel, PolyKernel, CustomKernel
    from shogun.Classifier import LibSVM
   
    kernel = CombinedKernel()
    feats_train = CombinedFeatures()
    
    tfeats = RealFeatures(fm_train_real)
    tkernel = PolyKernel(10,3)
    tkernel.init(tfeats, tfeats)
    K = tkernel.get_kernel_matrix()
    kernel.append_kernel(CustomKernel(K))
        
    subkfeats_train = RealFeatures(fm_train_real)
    feats_train.append_feature_obj(subkfeats_train)
    subkernel = PolyKernel(10,2)
    kernel.append_kernel(subkernel)

    kernel.init(feats_train, feats_train)
    
    labels = BinaryLabels(fm_label_twoclass)
    svm = LibSVM(1.0, kernel, labels)
    svm.train()

    kernel = CombinedKernel()
    feats_pred = CombinedFeatures()

    pfeats = RealFeatures(fm_test_real)
    tkernel = PolyKernel(10,3)
    tkernel.init(tfeats, pfeats)
    K = tkernel.get_kernel_matrix()
    kernel.append_kernel(CustomKernel(K))

    subkfeats_test = RealFeatures(fm_test_real)
    feats_pred.append_feature_obj(subkfeats_test)
    subkernel = PolyKernel(10, 2)
    kernel.append_kernel(subkernel)
    kernel.init(feats_train, feats_pred)

    svm.set_kernel(kernel)
    svm.apply()
    km_train=kernel.get_kernel_matrix()
    return km_train,kernel
開發者ID:behollis,項目名稱:muViewBranch,代碼行數:46,代碼來源:kernel_combined_custom_poly_modular.py

示例2: loadSVM

# 需要導入模塊: from shogun.Classifier import LibSVM [as 別名]
# 或者: from shogun.Classifier.LibSVM import set_kernel [as 別名]
def loadSVM(pickled_svm_filename, C, labels):
    """Loads a Shogun SVM object which was pickled by saveSVM"""
    from cPickle import Unpickler, PickleError
    from shogun.Kernel import CombinedKernel 
    pickle_file = open(pickled_svm_filename, 'rb')
    unpck = Unpickler(pickle_file)
    (version, num_sv, name, bias, alphas, svs) = unpck.load()
    if (version == __version__):
        svm = LibSVM(num_sv) # same as .create_new_model(num_sv)
        svm.set_bias(bias)
        svm.set_alphas(alphas)
        svm.set_support_vectors(svs)
        kernel = CombinedKernel() #not sure if this is even required
        kernel.set_name(name) # maybe not required
        svm.set_kernel(kernel)
    else: 
        print "File was pickled by another version of EasySVM.py or is not a kernel:"
        print "Received from ", pickled_svm_filename, ": ", version, "    expected: ", __version__
        raise PickleError
    return svm
開發者ID:boya888,項目名稱:oqtans_tools,代碼行數:22,代碼來源:EasySVM.py

示例3: xrange

# 需要導入模塊: from shogun.Classifier import LibSVM [as 別名]
# 或者: from shogun.Classifier.LibSVM import set_kernel [as 別名]
C=0.017
epsilon=1e-5
tube_epsilon=1e-2
svm=LibSVM()
svm.set_C(C, C)
svm.set_epsilon(epsilon)
svm.set_tube_epsilon(tube_epsilon)

for i in xrange(3):
	data_train=random.rand(num_feats, num_vec)
	data_test=random.rand(num_feats, num_vec)
	feats_train=RealFeatures(data_train)
	feats_test=RealFeatures(data_test)
	labels=Labels(random.rand(num_vec).round()*2-1)

	svm.set_kernel(LinearKernel(size_cache, scale))
	svm.set_labels(labels)

	kernel=svm.get_kernel()
	print "kernel cache size: %s" % (kernel.get_cache_size())

	kernel.init(feats_test, feats_test)
	svm.train()

	kernel.init(feats_train, feats_test)
	print svm.classify().get_labels()

	#kernel.remove_lhs_and_rhs()

	#import pdb
	#pdb.set_trace()
開發者ID:42MachineLearning,項目名稱:shogun,代碼行數:33,代碼來源:test_svm_kernel_multiple.py


注:本文中的shogun.Classifier.LibSVM.set_kernel方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。