當前位置: 首頁>>代碼示例>>Python>>正文


Python Classifier.LibSVM類代碼示例

本文整理匯總了Python中shogun.Classifier.LibSVM的典型用法代碼示例。如果您正苦於以下問題:Python LibSVM類的具體用法?Python LibSVM怎麽用?Python LibSVM使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了LibSVM類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: training_run

def training_run(options):
    """Conduct a training run and return a trained SVM kernel"""
    settings = MotifFinderSettings(kirmes_ini.MOTIF_LENGTH, options.window_width, options.replace)
    positives = MotifFinder(finder_settings=settings)
    positives.setFastaFile(options.positives)
    positives.setMotifs(options.pgff)
    pmotifs, ppositions = positives.getResults()
    negatives = MotifFinder(finder_settings=settings)
    negatives.setFastaFile(options.negatives)
    negatives.setMotifs(options.ngff)
    nmotifs, npositions = negatives.getResults()

    wds_kparams = kirmes_ini.WDS_KERNEL_PARAMETERS
    wds_svm = EasySVM.EasySVM(wds_kparams)
    num_positives = len(pmotifs.values()[0])
    num_negatives = len(nmotifs.values()[0])
    # Creating Kernel Objects
    kernel = CombinedKernel()
    features = CombinedFeatures()
    kernel_array = []
    motifs = pmotifs.keys()
    motifs.sort()
    # Adding Kmer Kernels
    for motif in motifs:
        all_examples = pmotifs[motif] + nmotifs[motif]
        motif_features = wds_svm.createFeatures(all_examples)
        wds_kernel = WeightedDegreePositionStringKernel(motif_features, motif_features, wds_kparams["degree"])
        wds_kernel.set_shifts(wds_kparams["shift"] * ones(wds_kparams["seqlength"], dtype=int32))
        features.append_feature_obj(motif_features)
        kernel_array.append(wds_kernel)
        kernel.append_kernel(wds_kernel)
    rbf_svm = EasySVM.EasySVM(kirmes_ini.RBF_KERNEL_PARAMETERS)
    positions = array(ppositions + npositions, dtype=float64).T
    position_features = rbf_svm.createFeatures(positions)
    features.append_feature_obj(position_features)
    motif_labels = append(ones(num_positives), -ones(num_negatives))
    complete_labels = Labels(motif_labels)
    rbf_kernel = GaussianKernel(position_features, position_features, kirmes_ini.RBF_KERNEL_PARAMETERS["width"])
    kernel_array.append(rbf_kernel)
    kernel.append_kernel(rbf_kernel)
    # Kernel init
    kernel.init(features, features)
    kernel.set_cache_size(kirmes_ini.K_CACHE_SIZE)
    svm = LibSVM(kirmes_ini.K_COMBINED_C, kernel, complete_labels)
    svm.parallel.set_num_threads(kirmes_ini.K_NUM_THREADS)
    # Training
    svm.train()
    if not os.path.exists(options.output_path):
        os.mkdir(options.output_path)
    html = {}
    if options.contrib:
        html["contrib"] = contrib(svm, kernel, motif_labels, kernel_array, motifs)
    if options.logos:
        html["poims"] = poims(svm, kernel, kernel_array, motifs, options.output_path)
    if options.query:
        html["query"] = evaluate(options, svm, kernel, features, motifs)
    htmlize(html, options.output_html)
開發者ID:veniciusgrjr,項目名稱:oqtans_tools,代碼行數:57,代碼來源:kirmes.py

示例2: modelselection_grid_search_kernel

def modelselection_grid_search_kernel():
	num_subsets=3
	num_vectors=20
	dim_vectors=3

	# create some (non-sense) data
	matrix=rand(dim_vectors, num_vectors)

	# create num_feautres 2-dimensional vectors
	features=RealFeatures()
	features.set_feature_matrix(matrix)

	# create labels, two classes
	labels=BinaryLabels(num_vectors)
	for i in range(num_vectors):
		labels.set_label(i, 1 if i%2==0 else -1)

	# create svm
	classifier=LibSVM()

	# splitting strategy
	splitting_strategy=StratifiedCrossValidationSplitting(labels, num_subsets)

	# accuracy evaluation
	evaluation_criterion=ContingencyTableEvaluation(ACCURACY)

	# cross validation class for evaluation in model selection
	cross=CrossValidation(classifier, features, labels, splitting_strategy, evaluation_criterion)
	cross.set_num_runs(1)

	# print all parameter available for modelselection
	# Dont worry if yours is not included, simply write to the mailing list
	classifier.print_modsel_params()

	# model parameter selection
	param_tree=create_param_tree()
	param_tree.print_tree()

	grid_search=GridSearchModelSelection(param_tree, cross)

	print_state=True
	best_combination=grid_search.select_model(print_state)
	print("best parameter(s):")
	best_combination.print_tree()

	best_combination.apply_to_machine(classifier)

	# larger number of runs to have tighter confidence intervals
	cross.set_num_runs(10)
	cross.set_conf_int_alpha(0.01)
	result=cross.evaluate()
	print("result: ")
	result.print_result()

	return 0
開發者ID:ratschlab,項目名稱:ASP,代碼行數:55,代碼來源:modelselection_grid_search_kernel.py

示例3: svm_train

def svm_train(kernel, labels, C1, C2=None):
    """Trains a SVM with the given kernel"""

    num_threads = 1

    kernel.io.disable_progress()
    svm = LibSVM(C1, kernel, labels)
    if C2:
        svm.set_C(C1, C2)
    svm.parallel.set_num_threads(num_threads)
    svm.io.disable_progress()
    svm.train()

    return svm
開發者ID:42MachineLearning,項目名稱:shogun,代碼行數:14,代碼來源:svm_params.py

示例4: init_svm

def init_svm(task_type, kernel, labels):
    """A factory for creating the right svm type"""
    C=1
    epsilon=1e-5
    if task_type == 'Binary Classification':
        svm = LibSVM(C, kernel, labels)
    elif task_type == 'Multi Class Classification':
        svm = LibSVMMultiClass(C, kernel, labels)
    elif task_type == 'Regression':
        tube_epsilon=1e-2
        svm=LibSVR(C, epsilon, kernel, labels)
        svm.set_tube_epsilon(tube_epsilon)
    else:
        print task_type + ' unknown!'

    return svm
開發者ID:jbeltram,項目名稱:mldata-utils,代碼行數:16,代碼來源:mlprocess.py

示例5: classifier_libsvm_minimal_modular

def classifier_libsvm_minimal_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_twoclass=label_traindat,width=2.1,C=1):
	from shogun.Features import RealFeatures, BinaryLabels
	from shogun.Classifier import LibSVM
	from shogun.Kernel import GaussianKernel

	feats_train=RealFeatures(fm_train_real);
	feats_test=RealFeatures(fm_test_real);
	kernel=GaussianKernel(feats_train, feats_train, width);

	labels=BinaryLabels(label_train_twoclass);
	svm=LibSVM(C, kernel, labels);
	svm.train();

	kernel.init(feats_train, feats_test);
	out=svm.apply().get_labels();
	testerr=mean(sign(out)!=label_train_twoclass)
開發者ID:Argram,項目名稱:shogun,代碼行數:16,代碼來源:classifier_libsvm_minimal_modular.py

示例6: bench_shogun

def bench_shogun(X, y, T, valid):
#
#       .. Shogun ..
#
    from shogun.Classifier import LibSVM
    from shogun.Features import RealFeatures, Labels
    from shogun.Kernel import GaussianKernel
    start = datetime.now()
    feat = RealFeatures(X.T)
    feat_test = RealFeatures(T.T)
    labels = Labels(y.astype(np.float64))
    kernel = GaussianKernel(feat, feat, sigma)
    shogun_svm = LibSVM(1., kernel, labels)
    shogun_svm.train()
    dec_func = shogun_svm.classify(feat_test).get_labels()
    score = np.mean(np.sign(dec_func) == valid)
    return score, datetime.now() - start
開發者ID:bdholt1,項目名稱:ml-benchmarks,代碼行數:17,代碼來源:bench_svm.py

示例7: libsvm

def libsvm ():
	print 'LibSVM'

	from shogun.Features import RealFeatures, Labels
	from shogun.Kernel import GaussianKernel
	from shogun.Evaluation import PerformanceMeasures
	from shogun.Classifier import LibSVM

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)

	width=2.1
	kernel=GaussianKernel(feats_train, feats_train, width)

	C=1
	epsilon=1e-5
	labels=Labels(label_train_twoclass)

	svm=LibSVM(C, kernel, labels)
	svm.set_epsilon(epsilon)
	svm.train()

	#kernel.init(feats_train, feats_test)
	output = svm.classify(feats_test)#.get_labels()
        #output_vector = output.get_labels()
        out=svm.classify().get_labels()
        testerr=mean(sign(out)!=testlab)
        print testerr
開發者ID:BrainTech,項目名稱:openbci,代碼行數:28,代碼來源:svm.py

示例8: classifier_multiclassmachine_modular

def classifier_multiclassmachine_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,width=2.1,C=1,epsilon=1e-5):
	from shogun.Features import RealFeatures, Labels
	from shogun.Kernel import GaussianKernel
	from shogun.Classifier import LibSVM, KernelMulticlassMachine, ONE_VS_REST_STRATEGY

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)
	kernel=GaussianKernel(feats_train, feats_train, width)

	labels=Labels(label_train_multiclass)

	classifier = LibSVM(C, kernel, labels)
	classifier.set_epsilon(epsilon)
	mc_classifier = KernelMulticlassMachine(ONE_VS_REST_STRATEGY,kernel,classifier,labels)
	mc_classifier.train()

	kernel.init(feats_train, feats_test)
	out = mc_classifier.apply().get_labels()
	return out
開發者ID:ashish-sadh,項目名稱:shogun,代碼行數:19,代碼來源:classifier_multiclassmachine_modular.py

示例9: classifier_multiclassmachine_modular

def classifier_multiclassmachine_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,width=2.1,C=1,epsilon=1e-5):
	from shogun.Features import RealFeatures, MulticlassLabels
	from shogun.Kernel import GaussianKernel
	from shogun.Classifier import LibSVM, KernelMulticlassMachine, MulticlassOneVsRestStrategy

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)
	kernel=GaussianKernel(feats_train, feats_train, width)

	labels=MulticlassLabels(label_train_multiclass)

	classifier = LibSVM()
	classifier.set_epsilon(epsilon)
	#print labels.get_labels()
	mc_classifier = KernelMulticlassMachine(MulticlassOneVsRestStrategy(),kernel,classifier,labels)
	mc_classifier.train()

	kernel.init(feats_train, feats_test)
	out = mc_classifier.apply().get_labels()
	return out
開發者ID:lgatto,項目名稱:shogun,代碼行數:20,代碼來源:classifier_multiclassmachine_modular.py

示例10: train

    def train(self, trainexamples, trainlabels):
        """Trains a SVM with the given kernel"""
        kernel_cache_size = 500
        num_threads = 6

        feats_train = self.createFeatures(trainexamples)
        if self.kparam['name'] == 'wd':
            self.kparam['seqlength'] = len(trainexamples[0])
        self.createKernel(feats_train)
        
        self.kernel.io.disable_progress()
        self.kernel.set_cache_size(int(kernel_cache_size))
    
        labels = Labels(numpy.array(trainlabels, numpy.double))
    
        svm = LibSVM(self.getC(), self.kernel, labels)
        svm.parallel.set_num_threads(num_threads)
        svm.io.disable_progress()
        svm.train()
    
        return (svm, feats_train)
開發者ID:boya888,項目名稱:oqtans_tools,代碼行數:21,代碼來源:EasySVM.py

示例11: classifier_custom_kernel_modular

def classifier_custom_kernel_modular (C=1,dim=7):
	from shogun.Features import RealFeatures, BinaryLabels
	from shogun.Kernel import CustomKernel
	from shogun.Classifier import LibSVM

	from numpy import diag,ones,sign
	from numpy.random import rand,seed

	seed((C,dim))

	lab=sign(2*rand(dim) - 1)
	data=rand(dim, dim)
	symdata=data*data.T + diag(ones(dim))
    
	kernel=CustomKernel()
	kernel.set_full_kernel_matrix_from_full(data)
	labels=BinaryLabels(lab)
	svm=LibSVM(C, kernel, labels)
	svm.train()
	predictions =svm.apply() 
	out=svm.apply().get_labels()
	return svm,out
開發者ID:AlexBinder,項目名稱:shogun,代碼行數:22,代碼來源:classifier_custom_kernel_modular.py

示例12: loadSVM

def loadSVM(pickled_svm_filename, C, labels):
    """Loads a Shogun SVM object which was pickled by saveSVM"""
    from cPickle import Unpickler, PickleError
    from shogun.Kernel import CombinedKernel 
    pickle_file = open(pickled_svm_filename, 'rb')
    unpck = Unpickler(pickle_file)
    (version, num_sv, name, bias, alphas, svs) = unpck.load()
    if (version == __version__):
        svm = LibSVM(num_sv) # same as .create_new_model(num_sv)
        svm.set_bias(bias)
        svm.set_alphas(alphas)
        svm.set_support_vectors(svs)
        kernel = CombinedKernel() #not sure if this is even required
        kernel.set_name(name) # maybe not required
        svm.set_kernel(kernel)
    else: 
        print "File was pickled by another version of EasySVM.py or is not a kernel:"
        print "Received from ", pickled_svm_filename, ": ", version, "    expected: ", __version__
        raise PickleError
    return svm
開發者ID:boya888,項目名稱:oqtans_tools,代碼行數:20,代碼來源:EasySVM.py

示例13: classifier_libsvm_modular

def classifier_libsvm_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_twoclass=label_traindat,width=2.1,C=1,epsilon=1e-5):
	from shogun.Features import RealFeatures, Labels
	from shogun.Kernel import GaussianKernel
	from shogun.Classifier import LibSVM

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)
	
	kernel=GaussianKernel(feats_train, feats_train, width)
	labels=Labels(label_train_twoclass)

	svm=LibSVM(C, kernel, labels)
	svm.set_epsilon(epsilon)
	svm.train()

	kernel.init(feats_train, feats_test)
	labels = svm.apply().get_labels()
	supportvectors = sv_idx=svm.get_support_vectors()
	alphas=svm.get_alphas()
	predictions = svm.apply()
	return predictions, svm, predictions.get_labels()
開發者ID:harshitsyal,項目名稱:shogun,代碼行數:21,代碼來源:classifier_libsvm_modular.py

示例14: libsvm

def libsvm ():
	print 'LibSVM'

	from shogun.Features import RealFeatures, Labels
	from shogun.Kernel import GaussianKernel
	from shogun.Classifier import LibSVM

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)
	width=2.1
	kernel=GaussianKernel(feats_train, feats_train, width)

	C=1
	epsilon=1e-5
	labels=Labels(label_train_twoclass)

	svm=LibSVM(C, kernel, labels)
	svm.set_epsilon(epsilon)
	svm.train()

	kernel.init(feats_train, feats_test)
	svm.classify().get_labels()
	sv_idx=svm.get_support_vectors()
	alphas=svm.get_alphas()
開發者ID:memimo,項目名稱:shogun-liblinear,代碼行數:24,代碼來源:classifier_libsvm_modular.py

示例15: kernel_combined_custom_poly_modular

def kernel_combined_custom_poly_modular(fm_train_real = traindat,fm_test_real = testdat,fm_label_twoclass=label_traindat):
    from shogun.Features import CombinedFeatures, RealFeatures, BinaryLabels
    from shogun.Kernel import CombinedKernel, PolyKernel, CustomKernel
    from shogun.Classifier import LibSVM
   
    kernel = CombinedKernel()
    feats_train = CombinedFeatures()
    
    tfeats = RealFeatures(fm_train_real)
    tkernel = PolyKernel(10,3)
    tkernel.init(tfeats, tfeats)
    K = tkernel.get_kernel_matrix()
    kernel.append_kernel(CustomKernel(K))
        
    subkfeats_train = RealFeatures(fm_train_real)
    feats_train.append_feature_obj(subkfeats_train)
    subkernel = PolyKernel(10,2)
    kernel.append_kernel(subkernel)

    kernel.init(feats_train, feats_train)
    
    labels = BinaryLabels(fm_label_twoclass)
    svm = LibSVM(1.0, kernel, labels)
    svm.train()

    kernel = CombinedKernel()
    feats_pred = CombinedFeatures()

    pfeats = RealFeatures(fm_test_real)
    tkernel = PolyKernel(10,3)
    tkernel.init(tfeats, pfeats)
    K = tkernel.get_kernel_matrix()
    kernel.append_kernel(CustomKernel(K))

    subkfeats_test = RealFeatures(fm_test_real)
    feats_pred.append_feature_obj(subkfeats_test)
    subkernel = PolyKernel(10, 2)
    kernel.append_kernel(subkernel)
    kernel.init(feats_train, feats_pred)

    svm.set_kernel(kernel)
    svm.apply()
    km_train=kernel.get_kernel_matrix()
    return km_train,kernel
開發者ID:behollis,項目名稱:muViewBranch,代碼行數:44,代碼來源:kernel_combined_custom_poly_modular.py


注:本文中的shogun.Classifier.LibSVM類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。