當前位置: 首頁>>代碼示例>>Python>>正文


Python LibSVM.classify方法代碼示例

本文整理匯總了Python中shogun.Classifier.LibSVM.classify方法的典型用法代碼示例。如果您正苦於以下問題:Python LibSVM.classify方法的具體用法?Python LibSVM.classify怎麽用?Python LibSVM.classify使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在shogun.Classifier.LibSVM的用法示例。


在下文中一共展示了LibSVM.classify方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: libsvm

# 需要導入模塊: from shogun.Classifier import LibSVM [as 別名]
# 或者: from shogun.Classifier.LibSVM import classify [as 別名]
def libsvm ():
	print 'LibSVM'

	from shogun.Features import RealFeatures, Labels
	from shogun.Kernel import GaussianKernel
	from shogun.Evaluation import PerformanceMeasures
	from shogun.Classifier import LibSVM

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)

	width=2.1
	kernel=GaussianKernel(feats_train, feats_train, width)

	C=1
	epsilon=1e-5
	labels=Labels(label_train_twoclass)

	svm=LibSVM(C, kernel, labels)
	svm.set_epsilon(epsilon)
	svm.train()

	#kernel.init(feats_train, feats_test)
	output = svm.classify(feats_test)#.get_labels()
        #output_vector = output.get_labels()
        out=svm.classify().get_labels()
        testerr=mean(sign(out)!=testlab)
        print testerr
開發者ID:BrainTech,項目名稱:openbci,代碼行數:30,代碼來源:svm.py

示例2: kernel_combined_custom_poly_modular

# 需要導入模塊: from shogun.Classifier import LibSVM [as 別名]
# 或者: from shogun.Classifier.LibSVM import classify [as 別名]
def kernel_combined_custom_poly_modular(fm_train_real = traindat,fm_test_real = testdat,fm_label_twoclass=label_traindat):
    from shogun.Features import CombinedFeatures, RealFeatures, Labels
    from shogun.Kernel import CombinedKernel, PolyKernel, CustomKernel
    from shogun.Classifier import LibSVM
   
    kernel = CombinedKernel()
    feats_train = CombinedFeatures()
    
    tfeats = RealFeatures(fm_train_real)
    tkernel = PolyKernel(10,3)
    tkernel.init(tfeats, tfeats)
    K = tkernel.get_kernel_matrix()
    kernel.append_kernel(CustomKernel(K))
        
    subkfeats_train = RealFeatures(fm_train_real)
    feats_train.append_feature_obj(subkfeats_train)
    subkernel = PolyKernel(10,2)
    kernel.append_kernel(subkernel)

    kernel.init(feats_train, feats_train)
    
    labels = Labels(fm_label_twoclass)
    svm = LibSVM(1.0, kernel, labels)
    svm.train()

    kernel = CombinedKernel()
    feats_pred = CombinedFeatures()

    pfeats = RealFeatures(fm_test_real)
    tkernel = PolyKernel(10,3)
    tkernel.init(tfeats, pfeats)
    K = tkernel.get_kernel_matrix()
    kernel.append_kernel(CustomKernel(K))

    subkfeats_test = RealFeatures(fm_test_real)
    feats_pred.append_feature_obj(subkfeats_test)
    subkernel = PolyKernel(10, 2)
    kernel.append_kernel(subkernel)
    kernel.init(feats_train, feats_pred)

    svm.set_kernel(kernel)
    svm.classify()
    km_train=kernel.get_kernel_matrix()
    return km_train,kernel
開發者ID:AsherBond,項目名稱:shogun,代碼行數:46,代碼來源:kernel_combined_custom_poly_modular.py

示例3: classifier_libsvm_modular

# 需要導入模塊: from shogun.Classifier import LibSVM [as 別名]
# 或者: from shogun.Classifier.LibSVM import classify [as 別名]
def classifier_libsvm_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_twoclass=label_traindat,width=2.1,C=1,epsilon=1e-5):
	from shogun.Features import RealFeatures, Labels
	from shogun.Kernel import GaussianKernel
	from shogun.Classifier import LibSVM

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)
	
	kernel=GaussianKernel(feats_train, feats_train, width)
	labels=Labels(label_train_twoclass)

	svm=LibSVM(C, kernel, labels)
	svm.set_epsilon(epsilon)
	svm.train()

	kernel.init(feats_train, feats_test)
	labels = svm.classify().get_labels()
	supportvectors = sv_idx=svm.get_support_vectors()
	alphas=svm.get_alphas()
	predictions = svm.classify()
	return predictions, svm, predictions.get_labels()
開發者ID:AsherBond,項目名稱:shogun,代碼行數:23,代碼來源:classifier_libsvm_modular.py

示例4: classifier_custom_kernel_modular

# 需要導入模塊: from shogun.Classifier import LibSVM [as 別名]
# 或者: from shogun.Classifier.LibSVM import classify [as 別名]
def classifier_custom_kernel_modular(C=1,dim=7):
	from shogun.Features import RealFeatures, Labels
	from shogun.Kernel import CustomKernel
	from shogun.Classifier import LibSVM

	from numpy import diag,ones,sign
	from numpy.random import rand,seed

	seed((C,dim))

	lab=sign(2*rand(dim) - 1)
	data=rand(dim, dim)
	symdata=data*data.T + diag(ones(dim))
    
	kernel=CustomKernel()
	kernel.set_full_kernel_matrix_from_full(data)
	labels=Labels(lab)
	svm=LibSVM(C, kernel, labels)
	svm.train()
	predictions =svm.classify() 
	out=svm.classify().get_labels()
	return svm,out
開發者ID:AsherBond,項目名稱:shogun,代碼行數:24,代碼來源:classifier_custom_kernel_modular.py

示例5: libsvm

# 需要導入模塊: from shogun.Classifier import LibSVM [as 別名]
# 或者: from shogun.Classifier.LibSVM import classify [as 別名]
def libsvm ():
	print 'LibSVM'

	from shogun.Features import RealFeatures, Labels
	from shogun.Kernel import GaussianKernel
	from shogun.Classifier import LibSVM

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)
	width=2.1
	kernel=GaussianKernel(feats_train, feats_train, width)

	C=1
	epsilon=1e-5
	labels=Labels(label_train_twoclass)

	svm=LibSVM(C, kernel, labels)
	svm.set_epsilon(epsilon)
	svm.train()

	kernel.init(feats_train, feats_test)
	svm.classify().get_labels()
	sv_idx=svm.get_support_vectors()
	alphas=svm.get_alphas()
開發者ID:memimo,項目名稱:shogun-liblinear,代碼行數:26,代碼來源:classifier_libsvm_modular.py

示例6: bench_shogun

# 需要導入模塊: from shogun.Classifier import LibSVM [as 別名]
# 或者: from shogun.Classifier.LibSVM import classify [as 別名]
def bench_shogun(X, y, T, valid):
#
#       .. Shogun ..
#
    from shogun.Classifier import LibSVM
    from shogun.Features import RealFeatures, Labels
    from shogun.Kernel import GaussianKernel
    start = datetime.now()
    feat = RealFeatures(X.T)
    feat_test = RealFeatures(T.T)
    labels = Labels(y.astype(np.float64))
    kernel = GaussianKernel(feat, feat, sigma)
    shogun_svm = LibSVM(1., kernel, labels)
    shogun_svm.train()
    dec_func = shogun_svm.classify(feat_test).get_labels()
    score = np.mean(np.sign(dec_func) == valid)
    return score, datetime.now() - start
開發者ID:bdholt1,項目名稱:ml-benchmarks,代碼行數:19,代碼來源:bench_svm.py

示例7: LibSVM

# 需要導入模塊: from shogun.Classifier import LibSVM [as 別名]
# 或者: from shogun.Classifier.LibSVM import classify [as 別名]
svm = LibSVM(1000.0, gk, labels)
svm.train()
lda=LDA(1,features,labels)
lda.train()

## plot points
subplot(211)
plot(pos[0,:], pos[1,:], "r.")
plot(neg[0,:], neg[1,:], "b.")
grid(True)
title('Data',size=10)

# plot PRC for SVM
subplot(223)
PRC_evaluation=PRCEvaluation()
PRC_evaluation.evaluate(svm.classify(),labels)
PRC = PRC_evaluation.get_PRC()
plot(PRC[:,0], PRC[:,1])
fill_between(PRC[:,0],PRC[:,1],0,alpha=0.1)
text(0.55,mean(PRC[:,1])/3,'auPRC = %.5f' % PRC_evaluation.get_auPRC())
grid(True)
xlabel('Precision')
ylabel('Recall')
title('LibSVM (Gaussian kernel, C=%.3f) PRC curve' % svm.get_C1(),size=10)

# plot PRC for LDA
subplot(224)
PRC_evaluation.evaluate(lda.classify(),labels)
PRC = PRC_evaluation.get_PRC()
plot(PRC[:,0], PRC[:,1])
fill_between(PRC[:,0],PRC[:,1],0,alpha=0.1)
開發者ID:alesis,項目名稱:shogun,代碼行數:33,代碼來源:prc.py

示例8:

# 需要導入模塊: from shogun.Classifier import LibSVM [as 別名]
# 或者: from shogun.Classifier.LibSVM import classify [as 別名]
from numpy import *
from numpy.random import rand
from shogun.Features import RealFeatures, Labels
from shogun.Kernel import CustomKernel
from shogun.Classifier import LibSVM

C=1
dim=7

lab=sign(2*rand(dim) - 1)
data=rand(dim, dim)
symdata=data*data.T

kernel=CustomKernel()
kernel.set_full_kernel_matrix_from_full(data)
labels=Labels(lab)
svm=LibSVM(C, kernel, labels)
svm.train()
out=svm.classify().get_labels()
開發者ID:memimo,項目名稱:shogun-liblinear,代碼行數:21,代碼來源:custom_kernel_modular.py

示例9: assert

# 需要導入模塊: from shogun.Classifier import LibSVM [as 別名]
# 或者: from shogun.Classifier.LibSVM import classify [as 別名]
        
    inner.append(inner_sum)


    #general case
    linterm_manual[idx] = B *tmp_lab[idx] * inner_sum - 1.0


################
# compare pre-svms

assert(presvm_liblinear.get_bias() == 0.0)
assert(presvm_libsvm.get_bias() == 0.0)

tmp_out = presvm_liblinear.classify(feat).get_labels()
tmp_out2 = presvm_libsvm.classify(feat).get_labels()


# compare outputs
for i in xrange(N):
    
    try:
        assert(abs(inner[i]-tmp_out[i])<= 0.001)
        assert(abs(inner[i]-tmp_out2[i])<= 0.001)
    except Exception, message:
        print "difference in outputs: (%.4f, %.4f, %.4f)" % (tmp_out[i], tmp_out2[i])



###############
# compare to LibSVM
開發者ID:cwidmer,項目名稱:multitask,代碼行數:33,代碼來源:debug_shogun_dasvm_linear.py

示例10: xrange

# 需要導入模塊: from shogun.Classifier import LibSVM [as 別名]
# 或者: from shogun.Classifier.LibSVM import classify [as 別名]
tube_epsilon=1e-2
svm=LibSVM()
svm.set_C(C, C)
svm.set_epsilon(epsilon)
svm.set_tube_epsilon(tube_epsilon)

for i in xrange(3):
	data_train=random.rand(num_feats, num_vec)
	data_test=random.rand(num_feats, num_vec)
	feats_train=RealFeatures(data_train)
	feats_test=RealFeatures(data_test)
	labels=Labels(random.rand(num_vec).round()*2-1)

	svm.set_kernel(LinearKernel(size_cache, scale))
	svm.set_labels(labels)

	kernel=svm.get_kernel()
	print "kernel cache size: %s" % (kernel.get_cache_size())

	kernel.init(feats_test, feats_test)
	svm.train()

	kernel.init(feats_train, feats_test)
	print svm.classify().get_labels()

	#kernel.remove_lhs_and_rhs()

	#import pdb
	#pdb.set_trace()

開發者ID:42MachineLearning,項目名稱:shogun,代碼行數:31,代碼來源:test_svm_kernel_multiple.py


注:本文中的shogun.Classifier.LibSVM.classify方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。