本文整理匯總了Python中graph_tool.Graph.vertices方法的典型用法代碼示例。如果您正苦於以下問題:Python Graph.vertices方法的具體用法?Python Graph.vertices怎麽用?Python Graph.vertices使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類graph_tool.Graph
的用法示例。
在下文中一共展示了Graph.vertices方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _filter_short_branch
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import vertices [as 別名]
def _filter_short_branch(self, filter=False, short=30):
"""
filter out very short branches: do this maybe not right for some models, for models with flat part, it is right
I will test how this effect the final matching results
need to delete nodes, switch with the last one then delete last
"""
if filter == False:
self.verts = self.verts_init
self.edges = self.edges_init
else:
init_graph = Graph(directed=False)
init_graph.add_vertex(len(self.verts_init))
for edge in self.edges_init:
init_graph.add_edge(init_graph.vertex(edge[0]), init_graph.vertex(edge[1]))
terminal_node = []
for v in init_graph.vertices():
if v.out_degree() == 1:
terminal_node.append(v)
visitor = DepthVisitor()
short_nodes = []
for tn in terminal_node:
search.dfs_search(init_graph, tn, visitor)
tmp_node = visitor.get_short_branch(min_length=short)
visitor.reset()
for n in tmp_node:
short_nodes.append(n)
## get edges on the short paths
short_nodes = list(set(short_nodes))
short_edges = []
temp_verts = self.verts_init[:]
v_num = len(self.verts_init)
if len(short_nodes):
for v in reversed(sorted(short_nodes)):
for ve in init_graph.vertex(v).out_edges():
short_edges.append(ve)
## delete edges first, then vertex
short_edges = list(set(short_edges))
for e in short_edges:
init_graph.remove_edge(e)
print 'deleting vertex',
for v in reversed(sorted(short_nodes)):
print v,
temp_verts[int(v)] = temp_verts[v_num-1]
init_graph.remove_vertex(v, fast=True)
v_num -= 1
print '\ndeleting related edges' # already done above, just info user
else:
print 'no short branches'
######## new vertices and edges ########
self.verts = temp_verts[:v_num]
self.edges = []
for e in init_graph.edges():
self.edges.append([int(e.source()), int(e.target())])
示例2: SkeletonData
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import vertices [as 別名]
class SkeletonData(object):
"""
class to store and process skeleton data, like generated from starlab mean curvature skeleton
"""
def __init__(self, fname=None, mesh_name=None, filter_sb=False):
"""
@param filter_sb: if filter out Short Branch
"""
if fname != None:
self.skel_name = fname
self.read_skel_file(fname)
self._filter_short_branch(filter=filter_sb, short=10)
self._parse_data()
self.mesh_name = mesh_name
self.vert_radius = None
def calc_skel_properties(self):
"""
calc all properties needed for matching
"""
self.calc_node_centricity()
self.calc_skel_radius()
self.calc_path_length_ratio()
self.calc_path_radius_ratio()
self.normalize_skeleton()
def read_skel_file(self, fname, dim=3):
if fname == None:
print 'please input skeleton file name'
sys.exit(0)
elif os.path.isfile(fname):
self.verts_init = []
self.edges_init = []
with open(fname) as sf:
for line in sf:
line = line.strip('\n')
line = line.split(' ')
if line[0] == '#':
continue
elif line[0] == 'v':
self.verts_init.append([x for x in line[1:(dim+1)]])
#### attention!! verts of edge start from 1 in files ####
elif line[0] == 'e':
self.edges_init.append([int(x)-1 for x in line[1:3]])
else:
print 'not support this format'
sys.exit(0)
else:
print 'no such flie', fname
sys.exit(0)
def _filter_short_branch(self, filter=False, short=30):
"""
filter out very short branches: do this maybe not right for some models, for models with flat part, it is right
I will test how this effect the final matching results
need to delete nodes, switch with the last one then delete last
"""
if filter == False:
self.verts = self.verts_init
self.edges = self.edges_init
else:
init_graph = Graph(directed=False)
init_graph.add_vertex(len(self.verts_init))
for edge in self.edges_init:
init_graph.add_edge(init_graph.vertex(edge[0]), init_graph.vertex(edge[1]))
terminal_node = []
for v in init_graph.vertices():
if v.out_degree() == 1:
terminal_node.append(v)
visitor = DepthVisitor()
short_nodes = []
for tn in terminal_node:
search.dfs_search(init_graph, tn, visitor)
tmp_node = visitor.get_short_branch(min_length=short)
visitor.reset()
for n in tmp_node:
short_nodes.append(n)
## get edges on the short paths
short_nodes = list(set(short_nodes))
short_edges = []
temp_verts = self.verts_init[:]
v_num = len(self.verts_init)
if len(short_nodes):
for v in reversed(sorted(short_nodes)):
for ve in init_graph.vertex(v).out_edges():
short_edges.append(ve)
## delete edges first, then vertex
short_edges = list(set(short_edges))
for e in short_edges:
init_graph.remove_edge(e)
print 'deleting vertex',
for v in reversed(sorted(short_nodes)):
print v,
#.........這裏部分代碼省略.........
示例3: BoardGraphGraphtool
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import vertices [as 別名]
class BoardGraphGraphtool(BoardGraphBase):
def __init__(self, number_of_vertices, graph_type):
super().__init__(number_of_vertices, graph_type)
# Graph tool creates directed multigraph by default.
self._graph = Graph()
self._graph.add_vertex(number_of_vertices)
self._graph.vertex_properties["cell"] = self._graph.new_vertex_property(
"object", number_of_vertices * [BoardCell()]
)
self._graph.edge_properties["direction"
] = self._graph.new_edge_property("object")
self._graph.edge_properties["weight"
] = self._graph.new_edge_property("int")
def __getitem__(self, position):
return self._graph.vp.cell[self._graph.vertex(position)]
def __setitem__(self, position, board_cell):
self._graph.vp.cell[self._graph.vertex(position)] = board_cell
def __contains__(self, position):
return position in range(0, self.vertices_count())
def vertices_count(self):
return self._graph.num_vertices()
def edges_count(self):
return self._graph.num_edges()
def has_edge(self, source_vertice, target_vertice, direction):
for e in self._graph.vertex(source_vertice).out_edges():
if (
int(e.target()) == target_vertice and
self._graph.ep.direction[e] == direction
):
return True
return False
def out_edges_count(self, source_vertice, target_vertice):
return len([
1 for e in self._graph.vertex(source_vertice).out_edges()
if int(e.target()) == target_vertice
])
def reconfigure_edges(self, width, height, tessellation):
"""
Uses tessellation object to create all edges in graph.
"""
self._graph.clear_edges()
for source_vertice in self._graph.vertices():
for direction in tessellation.legal_directions:
neighbor_vertice = tessellation.neighbor_position(
int(source_vertice),
direction,
board_width=width,
board_height=height
)
if neighbor_vertice is not None:
e = self._graph.add_edge(
source_vertice, neighbor_vertice, add_missing=False
)
self._graph.ep.direction[e] = direction
# TODO: Faster version?
# def reconfigure_edges(self, width, height, tessellation):
# """
# Uses tessellation object to create all edges in graph.
# """
# self._graph.clear_edges()
# edges_to_add = []
# directions_to_add = dict()
# for source_vertice in self._graph.vertices():
# for direction in tessellation.legal_directions:
# neighbor_vertice = tessellation.neighbor_position(
# int(source_vertice), direction,
# board_width=width, board_height=height
# )
# if neighbor_vertice is not None:
# edge = (int(source_vertice), neighbor_vertice,)
# edges_to_add.append(edge)
# if edge not in directions_to_add:
# directions_to_add[edge] = deque()
# directions_to_add[edge].append(direction)
# self._graph.add_edge_list(edges_to_add) if edges_to_add else None
# for e in edges_to_add:
# e_descriptors = self._graph.edge(
# s = self._graph.vertex(e[0]),
# t = self._graph.vertex(e[1]),
# all_edges = True
# )
# for e_descriptor in e_descriptors:
# if len(directions_to_add[e]) > 0:
# self._graph.ep.direction[e_descriptor] = directions_to_add[e][0]
#.........這裏部分代碼省略.........
示例4: SkeletonMatch
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import vertices [as 別名]
#.........這裏部分代碼省略.........
print 'none in matched_pairs'
return False
def test_spatial_configuration(self, n1, n2, matched_pairs):
"""
match spatial configuration
"""
threhold = self.distorted_threhold
#need test if can be inverse
skel1_vectors = self.skel1.normalized_feature_verts[matched_pairs[-3:,0]] - self.skel1.normalized_feature_verts[n1]
skel2_vectors = self.skel2.normalized_feature_verts[matched_pairs[-3:,1]] - self.skel2.normalized_feature_verts[n2]
#skel1_vectors = self.skel1.feature_node[matched_pairs[-3:,0]] - self.skel1.feature_node[n1]
#skel2_vectors = self.skel2.feature_node[matched_pairs[-3:,1]] - self.skel2.feature_node[n2]
"""
for i in xrange(3):
skel1_vectors[i] *= ( 1. / np.linalg.norm(skel1_vectors[i]) )
skel2_vectors[i] *= ( 1. / np.linalg.norm(skel2_vectors[i]) )
"""
a = np.dot(skel2_vectors, np.linalg.inv(skel1_vectors))
u, s, v = np.linalg.svd(a)
r = np.dot(u, v)
if np.linalg.det(r) < 0:
r *= -1.0
res1 = np.linalg.norm(a-r)
#print 'res1', res1,
if res1 > threhold:
return False
else:
a = np.dot(skel1_vectors, np.linalg.inv(skel2_vectors))
u, s, v = np.linalg.svd(a)
r = np.dot(u, v)
if np.linalg.det(r) < 0:
r *= -1.0
res2 = np.linalg.norm(a-r)
if res2 > threhold:
return False
#print 'res2', res2
#return max(res1, res2) <= threhold
return True
def elector_vote(self):
"""
use elector vote to find better correspondence
"""
vote_matrix = np.zeros((len(self.skel1.feature_node_index), len(self.skel2.feature_node_index)), dtype=int)
for v in self.vote_tree.vertices():
if v.out_degree() < 2:
pairs = self.node_pair[v]
if len(pairs) >= 8:
temp_pairs = pairs.a.reshape(-1,2)
for pair in temp_pairs:
vote_matrix[pair[0], pair[1]] += 1
node_num_skel1 = len(self.skel1.feature_node_index)
node_num_skel2 = len(self.skel2.feature_node_index)
self.vote_matrix = vote_matrix.copy()
#print 'original vote_matrix\n', vote_matrix
if np.max(vote_matrix) == 0:
final_corres = np.array([])
else:
node_pair = np.unravel_index(vote_matrix.argmax(), vote_matrix.shape)
vote_matrix[node_pair[0], :] = vote_matrix[:, node_pair[1]] = 0
final_corres = np.array(node_pair)
final_corres.shape = (-1,2)
#print 'correspondence\n', final_corres
#print 'vote_matrix\n', vote_matrix
while len(final_corres) < min(node_num_skel1, node_num_skel2):
junct1 = final_corres[final_corres[:,0] < len(self.skel1.junction_index), 0]
junct2 = final_corres[final_corres[:,1] < len(self.skel2.junction_index), 1]
node_pair = np.unravel_index(vote_matrix.argmax(), vote_matrix.shape)
if node_pair[0] not in final_corres[:,0] and node_pair[1] not in final_corres[:,1]:
if len(junct1) < 3 or len(junct2) < 3:
print 'less than 3 junction matched'
final_corres = np.vstack((final_corres, node_pair))
vote_matrix[node_pair[0], :] = vote_matrix[:, node_pair[1]] = 0
else:
idx1 = np.argmin(self.skel1.path_to_junction[node_pair[0], junct1])
idx2 = np.argmin(self.skel2.path_to_junction[node_pair[1], junct2])
if [junct1[idx1], junct2[idx2]] in final_corres.tolist():
final_corres = np.vstack((final_corres, node_pair))
vote_matrix[node_pair[0], :] = vote_matrix[:, node_pair[1]] = 0
#print 'added correspondence\n', final_corres
#print 'vote_matrix\n', vote_matrix
else:
vote_matrix[node_pair[0], node_pair[1]] = 0
else:
vote_matrix[node_pair[0], node_pair[1]] = 0
if np.all(vote_matrix == 0):
break
self.final_corres = final_corres
示例5: range
# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import vertices [as 別名]
# Flags to see which channels are currently in use
for i in range(number_frequency_bands):
flags_of_edges.append(1)
# Flags to keep record of the extent of the usage of a particular channel in a link
for i in range(number_frequency_bands):
flags_of_edges.append(0)
# Flags to fulfil the single point failure protection between those who share their primary paths
for i in range(number_frequency_bands):
flags_of_edges.append(1)
edges_logger[str(e.source()) + " --> " + str(e.target())] = flags_of_edges
edges_logger[str(e.target()) + " --> " + str(e.source())] = flags_of_edges
##### End of defining of the flags of edges #####
##### Generating the fixed paths #####
## Begin generation of fixed primary and backup paths ##
for src in g.vertices():
for tgt in g.vertices():
if not(src == tgt):
rev_path = []
tracer = tgt
dist, pred = gt.dijkstra_search(g, src, g.ep.weight)
g.vp.pred_tree = pred
#print pred.a
#print g.vp.pred_tree.a
while g.vertex(tracer) != src:
rev_path.append(tracer)
#print(tracer)
temp = tracer
tracer = g.vp.pred_tree[g.vertex(tracer)]
if temp == tracer: