當前位置: 首頁>>代碼示例>>Python>>正文


Python Graph.new_edge_property方法代碼示例

本文整理匯總了Python中graph_tool.Graph.new_edge_property方法的典型用法代碼示例。如果您正苦於以下問題:Python Graph.new_edge_property方法的具體用法?Python Graph.new_edge_property怎麽用?Python Graph.new_edge_property使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在graph_tool.Graph的用法示例。


在下文中一共展示了Graph.new_edge_property方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: RoadMap

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_edge_property [as 別名]
class RoadMap(object):
    def __init__(self, mapfile):
        self._mapfile = mapfile
        self.DIRECTION_index = 6
        self.PATHCLASS_index = 20
        self.g = Graph()
        self.g.edge_properties["length"] = self.g.new_edge_property("double")
        self.g.edge_properties["level"] = self.g.new_edge_property("int")
        self.g.vertex_properties["pos"] = self.g.new_vertex_property("vector<double>")
        self.cross_pos_index = {}

    def load(self):
        if self._mapfile[-3:] != 'shp':
            self.g = load_graph(self._mapfile)
            return

        try:
            sf = shapefile.Reader(self._mapfile)
        except Exception as e:
            print(str(e))
            return False
        roads_records = sf.shapeRecords()  # 獲取路段信息'
        for road_record in roads_records:
            cross_s_index = self.add_cross(road_record.shape.points[0])
            cross_e_index = self.add_cross(road_record.shape.points[-1])
            self.add_road_edge(cross_s_index, cross_e_index, road_record)
            if int(road_record.record[self.DIRECTION_index]) == 0:  # 若路段是雙向車道
                self.add_road_edge(cross_e_index, cross_s_index, road_record)
        return True

    def has_edge(self, s_vertex, e_vertex):
        if self.g.num_vertices() >= max(s_vertex, e_vertex):
            return self.g.edge(s_vertex, e_vertex)
        else:
            return None

    def add_cross(self, cross_pos):
        if cross_pos in self.cross_pos_index:
            return self.cross_pos_index.get(cross_pos)
        else:
            cross_index = self.g.add_vertex()
            self.g.vp.pos[cross_index] = cross_pos
            self.cross_pos_index[cross_pos] = cross_index
            return cross_index

    def add_road_edge(self, s_vertex, e_vertex, road):
        if self.has_edge(s_vertex, e_vertex):
            return self.g.edge(s_vertex, e_vertex)
        else:
            edge = self.g.add_edge(s_vertex, e_vertex)
            self.g.ep.level[edge] = int(road.record[self.PATHCLASS_index])
            self.g.ep.length[edge] = self.road_length(road)
            return edge

    @staticmethod
    def road_length(road):
        length = 0
        for sub_road in zip(road.shape.points[:-1], road.shape.points[1:]):
            length += distance.euclidean(sub_road[0], sub_road[1])
        return length
開發者ID:elvis2els,項目名稱:map,代碼行數:62,代碼來源:gt_roadmap.py

示例2: compose_graph

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_edge_property [as 別名]
def compose_graph(uid_pid_pairs):

    # set up graph
    g = Graph()
    g.vp['pid'] = v_pid_p = g.new_vertex_property('string')
    g.vp['count'] = v_count_p = g.new_vertex_property('int')
    g.ep['count'] = e_count_p = g.new_edge_property('int')

    pid_v_map = {}
    uid_last_v_map = {}
    vv_e_map = {}

    for uid, pid in uid_pid_pairs:

        # vertex

        v = pid_v_map.get(pid)
        if v is None:
            v = g.add_vertex()
            v_pid_p[v] = pid
            v_count_p[v] = 0
            pid_v_map[pid] = v
        v_count_p[v] += 1

        # edge

        last_v = uid_last_v_map.get(uid)
        uid_last_v_map[uid] = v
        if last_v is None:
            continue

        vv = (last_v, v)
        e = vv_e_map.get(vv)
        if e is None:
            e = g.add_edge(*vv)
            e_count_p[e] = 0
            vv_e_map[vv] = e
        e_count_p[e] += 1

    # calculate closeness
    g.vp['closeness'] = v_closeness_p = g.new_vertex_property('float')
    e_inverse_count_p = g.new_edge_property('int')
    e_inverse_count_p.a = e_count_p.a.max()-e_count_p.a
    debug('e_inverse_count_p.a: {}', e_inverse_count_p.a)
    closeness(g, weight=e_inverse_count_p, vprop=v_closeness_p)
    debug('v_closeness_p.a    : {}', v_closeness_p.a)
    v_closeness_p.a = nan_to_num(v_closeness_p.a)
    debug('v_closeness_p.a    : {}', v_closeness_p.a)

    # fillter
    g.vp['picked'] = v_picked_p = g.new_vertex_property('bool')
    debug('v_count_p.a.mean() : {}', v_count_p.a.mean())
    v_picked_p.a = v_count_p.a > v_count_p.a.mean()
    debug('v_picked_p.a       : {}', v_picked_p.a)
    g.set_vertex_filter(v_picked_p)
    g.set_vertex_filter(None)

    return g
開發者ID:moskytw,項目名稱:graph-tool-lab,代碼行數:60,代碼來源:test_graph_tool.py

示例3: gen_er

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_edge_property [as 別名]
def gen_er(dicProperties):
	np.random.seed()
	# initialize graph
	graphER = Graph()
	nNodes = 0
	nEdges = 0
	rDens = 0.0
	if "Nodes" in dicProperties.keys():
		nNodes = dicProperties["Nodes"]
		graphER.add_vertex(nNodes)
		if "Edges" in dicProperties.keys():
			nEdges = dicProperties["Edges"]
			rDens = nEdges / float(nNodes**2)
			dicProperties["Density"] = rDens
		else:
			rDens = dicProperties["Density"]
			nEdges = int(np.floor(rDens*nNodes**2))
			dicProperties["Edges"] = nEdges
	else:
		nEdges = dicProperties["Edges"]
		rDens = dicProperties["Density"]
		nNodes = int(np.floor(np.sqrt(nEdges/rDens)))
		graphER.add_vertex(nNodes)
		dicProperties["Nodes"] = nNodes
	# generate edges
	numTest,numCurrentEdges = 0,0
	while numCurrentEdges != nEdges and numTest < n_MAXTESTS:
		lstEdges = np.random.randint(0,nNodes,(nEdges-numCurrentEdges,2))
		graphER.add_edge_list(lstEdges)
		# remove loops and duplicate edges
		remove_self_loops(graphER)
		remove_parallel_edges(graphER)
		numCurrentEdges = graphER.num_edges()
		numTest += 1
	graphER.reindex_edges()
	nEdges = graphER.num_edges()
	rDens = nEdges / float(nNodes**2)
	# generate types
	rInhibFrac = dicProperties["InhibFrac"]
	lstTypesGen = np.random.uniform(0,1,nEdges)
	lstTypeLimit = np.full(nEdges,rInhibFrac)
	lstIsExcitatory = np.greater(lstTypesGen,lstTypeLimit)
	nExc = np.count_nonzero(lstIsExcitatory)
	epropType = graphER.new_edge_property("int",np.multiply(2,lstIsExcitatory)-np.repeat(1,nEdges)) # excitatory (True) or inhibitory (False)
	graphER.edge_properties["type"] = epropType
	# and weights
	if dicProperties["Weighted"]:
		lstWeights = dicGenWeights[dicProperties["Distribution"]](graphER,dicProperties,nEdges,nExc) # generate the weights
		epropW = graphER.new_edge_property("double",lstWeights) # crée la propriété pour stocker les poids
		graphER.edge_properties["weight"] = epropW
	return graphER
開發者ID:Silmathoron,項目名稱:ResCompPackage,代碼行數:53,代碼來源:graph_generation.py

示例4: build_minimum_tree

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_edge_property [as 別名]
def build_minimum_tree(g, root, terminals, edges, directed=True):
    """remove redundant edges from `edges` so that root can reach each node in terminals
    """
    # build the tree
    t = Graph(directed=directed)

    for _ in range(g.num_vertices()):
        t.add_vertex()

    for (u, v) in edges:
        t.add_edge(u, v)

    # mask out redundant edges
    vis = init_visitor(t, root)
    pbfs_search(t, source=root, terminals=list(terminals), visitor=vis)

    minimum_edges = {e
                     for u in terminals
                     for e in extract_edges_from_pred(t, root, u, vis.pred)}
    # print(minimum_edges)
    efilt = t.new_edge_property('bool')
    efilt.a = False
    for u, v in minimum_edges:
        efilt[u, v] = True
    t.set_edge_filter(efilt)

    return filter_nodes_by_edges(t, minimum_edges)
開發者ID:xiaohan2012,項目名稱:active-infection-source-finding,代碼行數:29,代碼來源:utils.py

示例5: graph_from_dataframes

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_edge_property [as 別名]
def graph_from_dataframes(vertex_df, edge_df):
    '''Re-creates a Graph object with PropertyMaps taken
    from the vertex_df and edge_df DataFrames

    Paramters:
    ==========
    verex_df: a DataFrame with an index named 'vertex_index'
    edge_df: a DataFrame with a multi-index named ('source', 'target')

    Returns:
    ========
    graph: a grah-tool Graph with PropertyMaps copied
        from the columns of the input DataFrames
    '''

    graph = Graph(directed=True)

    vertex_index = vertex_df.index.get_level_values(level='vertex_index')
    vertices = graph.add_vertex(n=vertex_index.shape[0])
    for col in vertex_df.columns:
        in_type = vertex_df[col].dtype.name
        try:
            dtype = ALIASES[in_type]
        except KeyError:
            log.info('Data type {} not supported'.format(in_type))
            continue
        prop = graph.new_vertex_property(dtype)
        prop.fa = vertex_df[col]
        graph.vertex_properties[col] = prop

    src = edge_df.index.names.index('source')
    trgt = edge_df.index.names.index('target')
    ### TODO: use the list edge creation
    for tup in edge_df.index:
        source, target = tup[src], tup[trgt]
        try:
            edge = graph.add_edge(source, target)
        except ValueError:
            log.info('Invalid vertex in (source: {}, target: {})'.format(source, target))
    for col in edge_df.columns:
        in_type = edge_df[col].dtype.name
        try:
            dtype = ALIASES[in_type]
        except KeyError:
            log.info('Data type {} not supported'.format(in_type))
            continue
        prop = graph.new_edge_property(dtype)
        prop.fa = edge_df[col]
        graph.edge_properties[col] = prop

    return graph
開發者ID:DamCB,項目名稱:hdfgraph,代碼行數:53,代碼來源:hdfgraph.py

示例6: load_graph

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_edge_property [as 別名]
def load_graph(infile):
    inmatrix = np.loadtxt(infile, dtype=np.dtype('uint32'), delimiter=" ")
    numv = np.amax(inmatrix[:,0:2])

    #print numv, inmatrix[:,0:2]

    g = Graph(directed=False)
    edge_weights = g.new_edge_property("double")
    g.edge_properties["weights"] = edge_weights
    vlist = list(g.add_vertex(numv))

    for i in inmatrix:
        edge = g.add_edge(vlist[i[0]-1], vlist[i[1]-1]) # need to convert from 1-based index in file to 0-based
        edge_weights[edge] = i[2]

    remove_parallel_edges(g)
    return g
開發者ID:kroq-gar78,項目名稱:BigGraphAnalysis,代碼行數:19,代碼來源:graph_reader.py

示例7: user_network

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_edge_property [as 別名]
def user_network(storage, track, session):
    g = Graph()
    users = defaultdict(g.add_vertex)

    g.graph_properties["track"] = g.new_graph_property("string", track)
    g.graph_properties["session"] = g.new_graph_property("string", session)

    g.edge_properties["created_at"] = g.new_edge_property("int64_t")

    for tweet in storage:
        tweeter_id = tweet["user__id_str"]
        origin_id = tweet["retweeted_status__user__id_str"]

        created_at = arrow.get(tweet["created_at"], DATE_FORMAT).timestamp

        if origin_id:
            edge = g.add_edge(users[tweeter_id], users[origin_id])
            g.edge_properties["created_at"][edge] = created_at

    return g
開發者ID:harius,項目名稱:twitterology,代碼行數:22,代碼來源:_networks.py

示例8: graph_from_dataframes

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_edge_property [as 別名]
def graph_from_dataframes(vertex_df, edge_df):
    '''Re-creates a Graph object with PropertyMaps taken
    from the vertex_df and edge_df DataFrames

    Paramters:
    ==========
    verex_df: a DataFrame with an index named 'vertex_index'
    edge_df: a DataFrame with a multi-index named ('source', 'target')

    Returns:
    ========
    graph: a grah-tool Graph with PropertyMaps copied
        from the columns of the input DataFrames
    '''

    graph = Graph(directed=True)

    vertex_index = vertex_df.index.get_level_values(level='vertex_index')
    vertices = graph.add_vertex(n=vertex_index.shape[0])
    for col in vertex_df.columns:
        dtype = ALIASES[vertex_df[col].dtype.name]
        prop = graph.new_vertex_property(dtype)
        prop.a = vertex_df[col]
        graph.vertex_properties[col] = prop

    src = edge_df.index.names.index('source')
    trgt = edge_df.index.names.index('target')
    ### TODO: use the list edge creation
    for tup in edge_df.index:
        source, target = tup[src], tup[trgt]
        edge = graph.add_edge(source, target)

    for col in edge_df.columns:
        dtype = ALIASES[edge_df[col].dtype.name]
        prop = graph.new_edge_property(dtype)
        prop.a = edge_df[col]
        graph.edge_properties[col] = prop
    return graph
開發者ID:glyg,項目名稱:hdfgraph,代碼行數:40,代碼來源:hdfgraph.py

示例9: build_closure

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_edge_property [as 別名]
def build_closure(g, terminals,
                  debug=False,
                  verbose=False):
    terminals = list(terminals)
    # build closure
    gc = Graph(directed=False)

    for _ in range(g.num_vertices()):
        gc.add_vertex()

    edges_with_weight = set()
    r2pred = {}

    for r in terminals:
        if debug:
            print('root {}'.format(r))
        vis = init_visitor(g, r)
        pbfs_search(g, source=r, terminals=terminals, visitor=vis)
        new_edges = set(get_edges(vis.dist, r, terminals))
        if debug:
            print('new edges {}'.format(new_edges))
        edges_with_weight |= new_edges
        r2pred[r] = vis.pred
    
    for u, v, c in edges_with_weight:
        gc.add_edge(u, v)
        
    eweight = gc.new_edge_property('int')
    weights = np.array([c for _, _, c in edges_with_weight])
    eweight.set_2d_array(weights)

    vfilt = gc.new_vertex_property('bool')
    vfilt.a = False
    for v in terminals:
        vfilt[v] = True
    gc.set_vertex_filter(vfilt)
    return gc, eweight, r2pred
開發者ID:xiaohan2012,項目名稱:active-infection-source-finding,代碼行數:39,代碼來源:steiner_tree.py

示例10: SkeletonData

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_edge_property [as 別名]

#.........這裏部分代碼省略.........

            for v in self.skel_graph.vertices():
                if v.out_degree() == 2 :
                    continue
                elif v.out_degree() == 1 :
                    terminal_index.append(int(v))
                elif v.out_degree() > 2 :
                    junction_index.append(int(v))

            self.terminal = self.verts[terminal_index]
            self.junction = self.verts[junction_index]
            self.terminal_index = terminal_index
            self.junction_index = junction_index
            self.feature_node_index = junction_index + terminal_index 
            self.feature_node = self.verts[self.feature_node_index]

            """
            edge_vert_index = self.edges.flatten()
            print 'edge vertex index dtype', edge_vert_index.dtype
            if 0 in edge_vert_index:
                print 'vertex start from 0'
            else:
                print 'vertex start from 1'
            print 'skeleton vertex num', self.skel_graph.num_vertices()
            print 'skeleton edge num', self.skel_graph.num_edges()
            """
    
    def _calc_edge_length(self):
        """
        calc edge length and make it edge property map in graph-tool
        """
        vec = self.verts[self.edges[:,0]] - self.verts[self.edges[:,1]]
        edge_length = np.sqrt(np.sum(vec**2, axis=-1))
        self.edge_length_map = self.skel_graph.new_edge_property("double")
        self.edge_length_map.a = edge_length
    

    def calc_node_centricity(self):
        """
        calc node centricity of feature nodes(terminal and junction nodes)
        T1 in Oscar's EG 2010 paper
        """
        self._calc_edge_length()
        node_centricity = []
        for n_idx in self.feature_node_index:
            dist = topology.shortest_distance(self.skel_graph, source=self.skel_graph.vertex(n_idx), weights=self.edge_length_map)
            node_centricity.append(dist.a.mean())

        node_centricity = np.array(node_centricity)
        self.node_centricity = node_centricity / np.max(node_centricity)


    def calc_skel_radius(self, mesh_name=None, dim=3):
        """
        calc nearest mesh vertex of skeleton vertex
        """
        if mesh_name != None:
            self.mesh_name = mesh_name

        if self.mesh_name == None:
            print 'please set mesh_name before calc_skel_radius'
        elif os.path.isfile(self.mesh_name):
            mesh = om.TriMesh()
            assert om.read_mesh(mesh, self.mesh_name)
            mesh_vertices = np.zeros((mesh.n_vertices(), dim), dtype=float)
            for n, vh in enumerate(mesh.vertices()):
開發者ID:bo-wu,項目名稱:skel_corres,代碼行數:70,代碼來源:skeleton_data.py

示例11: str

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_edge_property [as 別名]
        e2015 = child_graph.add_edge(child_graph.vertex_index[20], child_graph.vertex_index[15])
        e2115 = child_graph.add_edge(child_graph.vertex_index[21], child_graph.vertex_index[15])
        e1716 = child_graph.add_edge(child_graph.vertex_index[17], child_graph.vertex_index[16])
        e2116 = child_graph.add_edge(child_graph.vertex_index[21], child_graph.vertex_index[16])
        e2216 = child_graph.add_edge(child_graph.vertex_index[22], child_graph.vertex_index[16])
        e2317 = child_graph.add_edge(child_graph.vertex_index[23], child_graph.vertex_index[17])
        e1918 = child_graph.add_edge(child_graph.vertex_index[19], child_graph.vertex_index[18])
        e2019 = child_graph.add_edge(child_graph.vertex_index[20], child_graph.vertex_index[19])
        e2120 = child_graph.add_edge(child_graph.vertex_index[21], child_graph.vertex_index[20])
        e2221 = child_graph.add_edge(child_graph.vertex_index[22], child_graph.vertex_index[21])
        e2322 = child_graph.add_edge(child_graph.vertex_index[23], child_graph.vertex_index[22])


        ## Property definition
        graph_name = child_graph.new_graph_property("string")
        layer_capacities = child_graph.new_edge_property("int")
        layer_res_capacity = child_graph.new_edge_property("int")
        layer_flow = child_graph.new_edge_property("int")
        alternate_path = child_graph.new_edge_property("int")
        flag_path = child_graph.new_edge_property("int")

        ## Property Assignment
        child_graph.gp.layer_name = graph_name
        child_graph.ep.edge_capacity = layer_capacities
        child_graph.ep.residual_capacity = layer_res_capacity
        child_graph.ep.edge_flow = layer_flow
        child_graph.ep.shared_path = alternate_path
        child_graph.ep.path_flag = flag_path

        ## Setting the name of the graph
        child_graph.gp.layer_name = "Layer_" + str(i)
開發者ID:sanjaythakur,項目名稱:RoutingNWavelengthAssignment,代碼行數:33,代碼來源:RWA_BK.py

示例12: main

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_edge_property [as 別名]
def main():
	conn = serial_interface.connect()

	cur_track = track.init_tracka()
	g = Graph()
	g.add_vertex(len(cur_track))
	for (vi, node) in enumerate(cur_track): node.i = vi

	n_title = g.new_vertex_property("string")
	n_color = g.new_vertex_property("string")
	n_pos = g.new_vertex_property("vector<double>")
	e_title = g.new_edge_property("string")
	e_dist = g.new_edge_property("double")

	for node in cur_track:
		v = g.vertex(node.i)
		n_title[v] = node.name
		if node.typ == track.NODE_EXIT:
			# Invert points to match our ASCII display.
			n_pos[v] = (-node.reverse.coord_x, -node.reverse.coord_y)
		else:
			n_pos[v] = (-node.coord_x, -node.coord_y)
		e = g.add_edge(g.vertex(node.i), g.vertex(node.reverse.i))
		if node.typ == track.NODE_SENSOR: n_color[v] = "blue"
		elif node.typ == track.NODE_BRANCH: n_color[v] = "orange"
		elif node.typ == track.NODE_MERGE: n_color[v] = "yellow"
		elif node.typ == track.NODE_ENTER: n_color[v] = "green"
		elif node.typ == track.NODE_EXIT: n_color[v] = "red"
		else: n_color[v] = "white"
		for edge in node.edge:
			if edge.src is None: continue
			e = g.add_edge(g.vertex(edge.src.i), g.vertex(edge.dest.i))
			e_dist[e] = edge.dist
			e_title[e] = "%.2f" % (edge.dist)

	win = graph_tool.draw.GraphWindow(g, n_pos, (640, 480), edge_text=e_title, vertex_fill_color=n_color, vertex_text=n_title)
	win.show_all()
	def destroy_callback(*args, **kwargs):
		win.destroy()
		Gtk.main_quit()

	def set_switch(sw, d):
		for node in cur_track:
			if node.typ == track.NODE_BRANCH and node.num == sw:
				node.switch_direction = d
				return
		print "WARN: Could not find switch %d" % sw

	class Train():
		num = -1
		vel = 0.
		speed = 0.
		edge = cur_track[0].edge[0]
		edge_dist = 0
		SPEEDX = 1.

		def __init__(self, num):
			self.num = num

		def update(self):
			# Super shitty deacceleration model
			self.vel = self.vel + (0.018/self.SPEEDX)*(self.speed - self.vel)
			self.edge_dist += self.vel
			while True:
				e = self.e()
				if self.edge_dist < e_dist[e]: break
				if self.edge.dest.typ == track.NODE_SENSOR:
					conn.set_sensor_tripped(self.edge.dest.num)
				self.edge = self.edge.dest.edge[self.edge.dest.switch_direction]
				self.edge_dist -= e_dist[e]

		def draw(self, n_pos, da, cr):
			e = self.e()
			start, end = np.array(n_pos[e.source()]), np.array(n_pos[e.target()])
			alpha = self.edge_dist / e_dist[e]
			pos = start + alpha*(end - start)
			dp = win.graph.pos_to_device(pos) # dp: device position
			cr.rectangle(dp[0]-10, dp[1]-10, 20, 20)
			cr.set_source_rgb(102. / 256, 102. / 256, 102. / 256)
			cr.fill()
			cr.move_to(dp[0]-10, dp[1] + 10 - 12./2)
			cr.set_source_rgb(1., 1., 1.)
			cr.set_font_size(12)
			cr.show_text("%d" % self.num)
			cr.fill()
		def e(self): return g.edge(self.edge.src.i, self.edge.dest.i)
		def set_speed(self, speed): self.speed = speed/self.SPEEDX
		def toggle_reverse(self):
			self.edge = self.edge.reverse
			self.edge_dist = e_dist[self.e()] - self.edge_dist

	def find_train(train_number):
		for train in trains:
			if train.num == train_number:
				return train
		train = Train(train_number)
		trains.append(train)
		return train

	trains = [Train(12)]
#.........這裏部分代碼省略.........
開發者ID:crazy2be,項目名稱:cs452,代碼行數:103,代碼來源:main.py

示例13: makeGraphFast

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_edge_property [as 別名]
    def makeGraphFast(self,img,dia,xScale,yScale):
        print('Building Graph Data Structure'),
        start=time.time()
        G = Graph(directed=False)
        sumAddVertices=0
        
        vprop=G.new_vertex_property('object')
        eprop=G.new_edge_property('object')
        epropW=G.new_edge_property("float")
        h, w = np.shape(img)
        if xScale>0 and yScale>0: avgScale=(xScale+yScale)/2
        else: 
            avgScale=1.
            xScale=1.
            yScale=1.
        addedVerticesLine2=[]
        vListLine2=[]
        percentOld=0
        counter=0
        '''
        Sweep over each line in the image except the last line
        '''
        for idx,i in enumerate(img[:len(img)-2]):
            '''
            Get foreground indices in the current line of the image and make vertices
            '''
            counter+=1
            percent=(float(counter)/float(h))*100
            if percentOld+10< percent: 
                print (str(np.round(percent,1))+'% '),
                percentOld=percent

            line1=np.where(i==True)
            if len(line1[0])>0:
                line1=set(line1[0]).difference(set(addedVerticesLine2))
                vL=G.add_vertex(len(list(line1)))
                
                
                if len(line1)>1 : 
                    vList=vListLine2+list(vL)
                else: vList=vListLine2+[vL]
                line1=addedVerticesLine2+list(line1)
                for jdx,j in enumerate(line1):
                    vprop[vList[jdx]]={'imgIdx':(j,idx),'coord': (float(j)*xScale,float(idx)*yScale), 'nrOfPaths':0, 'diameter':float(dia[idx][j])*avgScale}
                '''
                keep order of the inserted vertices
                '''
                sumAddVertices+=len(line1)
                
                addedVerticesLine2=[]
                vListLine2=[]
                '''
                Connect foreground indices to neighbours in the next line
                '''
                for v1 in line1:
                    va=vList[line1.index(v1)]
                    diagonalLeft = diagonalRight = True
                    try:
                        if img[idx][v1-1]==True:
                            diagonalLeft=False
                            vb=vList[line1.index(v1-1)]
                            e=G.add_edge(va,vb)
                            eprop[e]={'coord1':vprop[va]['coord'], 'coord2':vprop[vb]['coord'],'weight':((vprop[va]['diameter']+vprop[vb]['diameter'])/2),'RTP':False}
                            epropW[e]=2./(eprop[e]['weight']**2)
                    except:
                        print 'Boundary vertex at: '+str([v1,idx-1])+' image size: '+ str([w,h])
                        pass
                    
                    try:
                        if img[idx][v1+1]==True:
                            diagonalRight=False
                            vb=vList[line1.index(v1+1)]
                            e=G.add_edge(va,vb)
                            eprop[e]={'coord1':vprop[va]['coord'], 'coord2':vprop[vb]['coord'],'weight':((vprop[va]['diameter']+vprop[vb]['diameter'])/2),'RTP':False}
                            epropW[e]=2./(eprop[e]['weight']**2)
                    except:
                        print 'Boundary vertex at: '+str([v1+1,idx])+' image size: '+ str([w,h])
                        pass # just if we are out of bounds
                    
                    try:
                        if img[idx+1][v1]==True:
                            diagonalRight=False
                            diagonalLeft=False
                            vNew=G.add_vertex()
                            vprop[vNew]={'imgIdx':(v1,idx+1),'coord': (float(v1)*xScale,float(idx+1)*yScale), 'nrOfPaths':0, 'diameter':float(dia[idx+1][v1])*avgScale}
                            vListLine2.append(vNew)
                            e=G.add_edge(vList[line1.index(v1)],vNew)
                            eprop[e]={'coord1':vprop[va]['coord'], 'coord2':vprop[vNew]['coord'],'weight':((vprop[va]['diameter']+vprop[vNew]['diameter'])/2),'RTP':False}
                            epropW[e]=1./(eprop[e]['weight']**2)
                            if v1 not in addedVerticesLine2: addedVerticesLine2.append(v1)
                    except:
                        print 'Boundary vertex at: '+str([v1,idx+1])+' image size: '+ str([w,h])
                        pass
                    
                    try:    
                        if diagonalRight == True and img[idx+1][v1+1]==True:
                            vNew=G.add_vertex()
                            vprop[vNew]={'imgIdx':(v1+1,idx+1),'coord': (float(v1+1)*xScale,float(idx+1)*yScale), 'nrOfPaths':0, 'diameter':float(dia[idx+1][v1+1])*avgScale}
                            vListLine2.append(vNew)
                            e=G.add_edge(vList[line1.index(v1)],vNew)
#.........這裏部分代碼省略.........
開發者ID:abucksch,項目名稱:DIRT,代碼行數:103,代碼來源:Segmentation.py

示例14: makeGraph

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_edge_property [as 別名]
    def makeGraph(self,img,dia,xScale,yScale):
        print 'Building Graph Data Structure'
        start=time.time()
        G = Graph(directed=False)
        vprop=G.new_vertex_property('object')
        eprop=G.new_edge_property('object')
        epropW=G.new_edge_property("int32_t")
        avgScale=(xScale+yScale)/2

        test=np.where(img==True)
        ss = np.shape(test)
        cccc=0
        percentOld=0.0
        print str(np.round(percentOld,1))+'%'
        for (i,j) in zip(test[1],test[0]):
                cccc+=1
                percent=(float(cccc)/float(ss[1]))*100
                if percentOld+10< percent: 
                    print str(np.round(percent,1))+'%'
                    percentOld=percent
                nodeNumber1 = (float(i)*yScale,float(j)*xScale)
                if gu.find_vertex(G, vprop, {'imgIdx':(j,i),'coord':nodeNumber1, 'nrOfPaths':0, 'diameter':float(dia[j][i])*avgScale}):
                            v1=gu.find_vertex(G, vprop, {'imgIdx':(j,i),'coord':nodeNumber1, 'nrOfPaths':0, 'diameter':float(dia[j][i])*avgScale})[0]
                else:
                    v1=G.add_vertex()
                    vprop[G.vertex(v1)]={'imgIdx':(j,i),'coord':nodeNumber1, 'nrOfPaths':0, 'diameter':float(dia[j][i])*avgScale}
                try:
                    
                    if img[j,i+1] == True:
                        nodeNumber2 = (float(i+1)*yScale,float(j)*xScale)
                        if gu.find_vertex(G, vprop, {'imgIdx':(j,i+1),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j][i+1])*avgScale}):
                            v2=gu.find_vertex(G, vprop, {'imgIdx':(j,i+1),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j][i+1])*avgScale})[0]
                            if gu.find_edge(G, eprop, {'coord1':vprop[v2]['coord'], 'coord2':vprop[v1]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}):
                                pass
                            else:
                                e = G.add_edge(v1, v2)
                                epropW[e]=(((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)/avgScale)**4
                                eprop[e]={'coord1':vprop[v1]['coord'], 'coord2':vprop[v2]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}
                        else:
                            v2=G.add_vertex()
                            vprop[G.vertex(v2)]={'imgIdx':(j,i+1),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j][i+1])*avgScale}
                            e = G.add_edge(v1, v2)
                            epropW[e]=(((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)/avgScale)**4
                            eprop[e]={'coord1':vprop[v1]['coord'], 'coord2':vprop[v2]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}
                except:
                    pass
                try:
                    if img[j,i-1] == True:
                        nodeNumber2 = (float(i-1)*yScale,float(j)*xScale)
                        if gu.find_vertex(G, vprop, {'imgIdx':(j,i-1),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j][i-1])*avgScale}):
                            v2=gu.find_vertex(G, vprop, {'imgIdx':(j,i-1),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j][i-1])*avgScale})[0]
                            if gu.find_edge(G, eprop, {'coord1':vprop[v2]['coord'], 'coord2':vprop[v1]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}):
                                pass
                            else:
                                e = G.add_edge(v1, v2)
                                epropW[e]=(((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)/avgScale)**4
                                eprop[e]={'coord1':vprop[v1]['coord'], 'coord2':vprop[v2]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}
                        else:
                            v2=G.add_vertex()
                            vprop[G.vertex(v2)]={'imgIdx':(j,i-1),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j][i-1])*avgScale}
                            e = G.add_edge(v1, v2)
                            epropW[e]=(((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)/avgScale)**4
                            eprop[e]={'coord1':vprop[v1]['coord'], 'coord2':vprop[v2]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}
                except:pass
                try:
                    if img[j + 1,i] == True:
                        nodeNumber2 = (float(i)*yScale,float(j+1)*xScale)
                        if gu.find_vertex(G, vprop, {'imgIdx':(j+1,i),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j+1][i])*avgScale}):
                            v2=gu.find_vertex(G, vprop, {'imgIdx':(j+1,i),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j+1][i])*avgScale})[0]
                            if gu.find_edge(G, eprop, {'coord1':vprop[v2]['coord'], 'coord2':vprop[v1]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}):
                                pass
                            else:
                                e = G.add_edge(v1, v2)
                                epropW[e]=(((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)/avgScale)**4
                                eprop[e]={'coord1':vprop[v1]['coord'], 'coord2':vprop[v2]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}
                        else:
                            v2=G.add_vertex()
                            vprop[G.vertex(v2)]={'imgIdx':(j+1,i),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j+1][i])*avgScale}
                            e = G.add_edge(v1, v2)
                            epropW[e]=(((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)/avgScale)**4
                            eprop[e]={'coord1':vprop[v1]['coord'], 'coord2':vprop[v2]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}
                except:pass
                try:
                    if img[j - 1,i] == True:
                        nodeNumber2 = (float(i)*yScale,float(j-1)*xScale)
                        if gu.find_vertex(G, vprop, {'imgIdx':(j-1,i),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j-1][i])*avgScale}):
                            v2=gu.find_vertex(G, vprop, {'imgIdx':(j-1,i),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j-1][i])*avgScale})[0]
                            if gu.find_edge(G, eprop, {'coord1':vprop[v2]['coord'], 'coord2':vprop[v1]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}):
                                pass
                            else:
                                e = G.add_edge(v1, v2)
                                epropW[e]=(((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)/avgScale)**4
                                eprop[e]={'coord1':vprop[v1]['coord'], 'coord2':vprop[v2]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}
                        else:
                            v2=G.add_vertex()
                            vprop[G.vertex(v2)]={'imgIdx':(j-1,i),'coord':nodeNumber2, 'nrOfPaths':0, 'diameter':float(dia[j-1][i])*avgScale}
                            e = G.add_edge(v1, v2)
                            epropW[e]=(((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)/avgScale)**4
                            eprop[e]={'coord1':vprop[v1]['coord'], 'coord2':vprop[v2]['coord'],'weight':((vprop[v1]['diameter']+vprop[v2]['diameter'])/2)**4,'RTP':False}
                except: pass
#.........這裏部分代碼省略.........
開發者ID:abucksch,項目名稱:DIRT,代碼行數:103,代碼來源:Segmentation.py

示例15: gen_fs

# 需要導入模塊: from graph_tool import Graph [as 別名]
# 或者: from graph_tool.Graph import new_edge_property [as 別名]

#.........這裏部分代碼省略.........
			dicProperties["Density"] = rDens
		else:
			rDens = dicProperties["Density"]
			nEdges = int(np.floor(rDens*nNodes**2))
			dicProperties["Edges"] = nEdges
	else:
		nEdges = dicProperties["Edges"]
		rDens = dicProperties["Density"]
		nNodes = int(np.floor(np.sqrt(nEdges/rDens)))
		graphFS.add_vertex(nNodes)
		dicProperties["Nodes"] = nNodes
	# on définit le nombre d'arcs à créer
	nArcs = int(np.floor(rDens*nNodes**2)/(1+rFracRecip))
	# on définit les paramètres fonctions de probabilité associées F(x) = A x^{-tau}
	Ai = nArcs*(rInDeg-1)/(nNodes)
	Ao = nArcs*(rOutDeg-1)/(nNodes)
	# on définit les moyennes des distributions de pareto 2 = lomax
	rMi = 1/(rInDeg-2.)
	rMo = 1/(rOutDeg-2.)
	# on définit les trois listes contenant les degrés sortant/entrant/bidirectionnels associés aux noeuds i in range(nNodes)
	lstInDeg = np.random.pareto(rInDeg,nNodes)+1
	lstOutDeg = np.random.pareto(rOutDeg,nNodes)+1
	lstInDeg = np.floor(np.multiply(Ai/np.mean(lstInDeg), lstInDeg)).astype(int)
	lstOutDeg = np.floor(np.multiply(Ao/np.mean(lstOutDeg), lstOutDeg)).astype(int)
	# on génère les stubs qui vont être nécessaires et on les compte
	nInStubs = int(np.sum(lstInDeg))
	nOutStubs = int(np.sum(lstOutDeg))
	lstInStubs = np.zeros(np.sum(lstInDeg))
	lstOutStubs = np.zeros(np.sum(lstOutDeg))
	nStartIn = 0
	nStartOut = 0
	for vert in range(nNodes):
		nInDegVert = lstInDeg[vert]
		nOutDegVert = lstOutDeg[vert]
		for j in range(np.max([nInDegVert,nOutDegVert])):
			if j < nInDegVert:
				lstInStubs[nStartIn+j] += vert
			if j < nOutDegVert:
				lstOutStubs[nStartOut+j] += vert
		nStartOut+=nOutDegVert
		nStartIn+=nInDegVert
	# on vérifie qu'on a à peu près le nombre voulu d'edges
	while nInStubs*(1+rFracRecip)/float(nArcs) < 0.95 :
		vert = np.random.randint(0,nNodes)
		nAddInStubs = int(np.floor(Ai/rMi*(np.random.pareto(rInDeg)+1)))
		lstInStubs = np.append(lstInStubs,np.repeat(vert,nAddInStubs)).astype(int)
		nInStubs+=nAddInStubs
	while nOutStubs*(1+rFracRecip)/float(nArcs) < 0.95 :
		nAddOutStubs = int(np.floor(Ao/rMo*(np.random.pareto(rOutDeg)+1)))
		lstOutStubs = np.append(lstOutStubs,np.repeat(vert,nAddOutStubs)).astype(int)
		nOutStubs+=nAddOutStubs
	# on s'assure d'avoir le même nombre de in et out stubs (1.13 is an experimental correction)
	nMaxStubs = int(1.13*(2.0*nArcs)/(2*(1+rFracRecip)))
	if nInStubs > nMaxStubs and nOutStubs > nMaxStubs:
		np.random.shuffle(lstInStubs)
		np.random.shuffle(lstOutStubs)
		lstOutStubs.resize(nMaxStubs)
		lstInStubs.resize(nMaxStubs)
		nOutStubs = nInStubs = nMaxStubs
	elif nInStubs < nOutStubs:
		np.random.shuffle(lstOutStubs)
		lstOutStubs.resize(nInStubs)
		nOutStubs = nInStubs
	else:
		np.random.shuffle(lstInStubs)
		lstInStubs.resize(nOutStubs)
		nInStubs = nOutStubs
	# on crée le graphe, les noeuds et les stubs
	nRecip = int(np.floor(nInStubs*rFracRecip))
	nEdges = nInStubs + nRecip +1
	# les stubs réciproques
	np.random.shuffle(lstInStubs)
	np.random.shuffle(lstOutStubs)
	lstInRecip = lstInStubs[0:nRecip]
	lstOutRecip = lstOutStubs[0:nRecip]
	lstEdges = np.array([np.concatenate((lstOutStubs,lstInRecip)),np.concatenate((lstInStubs,lstOutRecip))]).astype(int)
	# add edges
	graphFS.add_edge_list(np.transpose(lstEdges))
	remove_self_loops(graphFS)
	remove_parallel_edges(graphFS)
	lstIsolatedVert = find_vertex(graphFS, graphFS.degree_property_map("total"), 0)
	graphFS.remove_vertex(lstIsolatedVert)
	graphFS.reindex_edges()
	nNodes = graphFS.num_vertices()
	nEdges = graphFS.num_edges()
	rDens = nEdges / float(nNodes**2)
	# generate types
	rInhibFrac = dicProperties["InhibFrac"]
	lstTypesGen = np.random.uniform(0,1,nEdges)
	lstTypeLimit = np.full(nEdges,rInhibFrac)
	lstIsExcitatory = np.greater(lstTypesGen,lstTypeLimit)
	nExc = np.count_nonzero(lstIsExcitatory)
	epropType = graphFS.new_edge_property("int",np.multiply(2,lstIsExcitatory)-np.repeat(1,nEdges)) # excitatory (True) or inhibitory (False)
	graphFS.edge_properties["type"] = epropType
	# and weights
	if dicProperties["Weighted"]:
		lstWeights = dicGenWeights[dicProperties["Distribution"]](graphFS,dicProperties,nEdges,nExc) # generate the weights
		epropW = graphFS.new_edge_property("double",lstWeights) # crée la propriété pour stocker les poids
		graphFS.edge_properties["weight"] = epropW
	return graphFS
開發者ID:Silmathoron,項目名稱:ResCompPackage,代碼行數:104,代碼來源:graph_generation.py


注:本文中的graph_tool.Graph.new_edge_property方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。